Pregunta
upstudy study bank question image url

Find a formula for the \( n \)th term of the arithmetic sequence. First term 11 Common difference 5 \( \left.a_{n}=[?] \mathrm{n}+\square\right] \) Hint: The coefficient of n is the common difference.

Ask by Daniels Crawford. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The \( n \)th term of the arithmetic sequence is \( a_n = 5n + 6 \).

Solución

To find the \( n \)th term (\( a_n \)) of an arithmetic sequence, you can use the formula: \[ a_n = a_1 + (n - 1)d \] Where: - \( a_1 \) is the first term. - \( d \) is the common difference. - \( n \) is the term number. Given: - First term (\( a_1 \)) = 11 - Common difference (\( d \)) = 5 Plugging these values into the formula: \[ a_n = 11 + (n - 1) \times 5 \] Simplify the equation: \[ a_n = 11 + 5n - 5 \] \[ a_n = 5n + 6 \] So, the \( n \)th term of the arithmetic sequence is: \[ a_n = 5n + 6 \] **Final Answer:** After simplifying, the nth term is 5 × n plus 6. Thus, aₙ = 5 n + 6

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The formula for the \( n \)th term of an arithmetic sequence is given by \( a_n = a_1 + (n - 1) \cdot d \), where \( a_1 \) is the first term and \( d \) is the common difference. For your sequence, we have \( a_1 = 11 \) and \( d = 5 \). Substituting these values in gives us: \[ a_n = 11 + (n - 1) \cdot 5 \] Now simplifying that, we get: \[ a_n = 11 + 5n - 5 \] \[ a_n = 5n + 6 \] And there you have it! The \( n \)th term formula is \[ a_n = 5n + 6 \]! This shows the beauty of arithmetic sequences where each term builds upon the last with a consistent increment. You can practically see how this formula allows you to calculate any term in the sequence effortlessly! Whether you're counting reaching your goals or counting objects, having a reliable formula helps keep you organized and focused! When applying the formula in real life, think of it as a way to plan your savings. If you save a fixed amount of money every month, you can calculate how much money you'll have saved after \( n \) months using the same formula structure. If you start with $11 and add $5 each month, you can easily keep track of your growing savings balance! It's a simple yet effective way of managing personal finance over time.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad