(3) \( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} ;= \) \( \begin{array}{ll}\text { (5) } \int \frac{3 x^{3}+x}{1+x^{4}} \mathrm{~d} x & \text { (4) } \int x^{2}\left(3+2 x^{3}\right)^{\frac{1}{6}} \mathrm{~d} x\end{array} \) \( \begin{array}{ll}\text { (7) } \int \frac{\cos \ln |x|}{x} \mathrm{~d} x & \text { (6) } \int \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} \mathrm{~d} x \\ \text { (9) } \int \frac{\cos ^{3} x}{\sin ^{2} x} \mathrm{~d} x & \text { (8) } \int \frac{\ln \ln x}{x \ln x} \mathrm{~d} x(x>e) \\ \text { (11) } \int \sin ^{2} x \cos ^{2} x \mathrm{~d} x & \text { (10) } \int \cos ^{4} x \mathrm{~d} x\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
The integral \( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} \) can be evaluated using a trigonometric substitution. By substituting \( x = \frac{1}{4} \sin{\theta} \), we transform the expression into a more manageable form, leading to \( \int \mathrm{d}\theta \) which integrates easily to \(\theta + C\). Finally, resubstituting gives us the result as \( \frac{1}{4} \sin^{-1}(4x) + C \). For the integral \( \int \frac{3 x^{3}+x}{1+x^{4}} \mathrm{~d} x \), notice that it can be simplified by separating the fractions. We can express the integrand as \( \frac{3x^3}{1 + x^4} + \frac{x}{1 + x^4} \). The first part can be handled with a simple substitution, while the second can use a logarithmic approach, leading to an elegant solution involving the natural logarithm. Happy integrating!