Pregunta
upstudy study bank question image url

(3) \( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} ;= \) \( \begin{array}{ll}\text { (5) } \int \frac{3 x^{3}+x}{1+x^{4}} \mathrm{~d} x & \text { (4) } \int x^{2}\left(3+2 x^{3}\right)^{\frac{1}{6}} \mathrm{~d} x\end{array} \) \( \begin{array}{ll}\text { (7) } \int \frac{\cos \ln |x|}{x} \mathrm{~d} x & \text { (6) } \int \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} \mathrm{~d} x \\ \text { (9) } \int \frac{\cos ^{3} x}{\sin ^{2} x} \mathrm{~d} x & \text { (8) } \int \frac{\ln \ln x}{x \ln x} \mathrm{~d} x(x>e) \\ \text { (11) } \int \sin ^{2} x \cos ^{2} x \mathrm{~d} x & \text { (10) } \int \cos ^{4} x \mathrm{~d} x\end{array} \)

Ask by Fleming Peterson. in China
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} = \frac{1}{4} \arcsin(4x) + C \)

Solución

Alright, I need to solve the integral \( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} \). Let's start by analyzing the integrand. The expression under the square root, \(1 - 16x^2\), resembles the standard form of a trigonometric substitution, specifically the form \(1 - a^2x^2\), which suggests a substitution involving the sine function. First, I'll recall that the integral of the form \( \int \frac{\mathrm{d} x}{\sqrt{1 - a^2x^2}} \) can be solved using the substitution \( x = \frac{1}{a} \sin \theta \). This substitution simplifies the integrand to a standard form that can be easily integrated. Applying this substitution to our integral: Let \( x = \frac{1}{4} \sin \theta \), which implies \( \mathrm{d}x = \frac{1}{4} \cos \theta \, \mathrm{d}\theta \). Substituting into the integral: \[ \int \frac{\mathrm{d} x}{\sqrt{1 - 16 x^{2}}} = \int \frac{\frac{1}{4} \cos \theta \, \mathrm{d}\theta}{\sqrt{1 - 16 \left( \frac{1}{4} \sin \theta \right)^2}} = \int \frac{\frac{1}{4} \cos \theta \, \mathrm{d}\theta}{\sqrt{1 - \sin^2 \theta}} = \int \frac{\frac{1}{4} \cos \theta \, \mathrm{d}\theta}{\cos \theta} = \frac{1}{4} \int \mathrm{d}\theta = \frac{1}{4} \theta + C \] Now, recalling that \( x = \frac{1}{4} \sin \theta \), we can express \( \theta \) in terms of \( x \): \[ \theta = \arcsin(4x) \] Therefore, the integral simplifies to: \[ \frac{1}{4} \arcsin(4x) + C \] But wait, let's double-check this result to ensure there are no mistakes. Another approach could be to recognize that the integral resembles the standard form of the arcsine function, which is \( \int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin\left(\frac{x}{a}\right) + C \). Comparing this with our integral, it seems consistent. Alternatively, I could consider using a different substitution, such as \( t = 4x \), which would simplify the integral to: \[ \int \frac{\mathrm{d}t}{\sqrt{1 - t^2}} = \arcsin(t) + C = \arcsin(4x) + C \] This confirms the earlier result. Another method involves recognizing that the integral can be expressed in terms of the inverse hyperbolic sine function, but since the integrand is positive and the limits are such that the arcsine function is appropriate, the arcsine substitution seems the most straightforward. In conclusion, after verifying through multiple methods, the integral \( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} \) evaluates to \( \frac{1}{4} \arcsin(4x) + C \), where \( C \) is the constant of integration.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The integral \( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} \) can be evaluated using a trigonometric substitution. By substituting \( x = \frac{1}{4} \sin{\theta} \), we transform the expression into a more manageable form, leading to \( \int \mathrm{d}\theta \) which integrates easily to \(\theta + C\). Finally, resubstituting gives us the result as \( \frac{1}{4} \sin^{-1}(4x) + C \). For the integral \( \int \frac{3 x^{3}+x}{1+x^{4}} \mathrm{~d} x \), notice that it can be simplified by separating the fractions. We can express the integrand as \( \frac{3x^3}{1 + x^4} + \frac{x}{1 + x^4} \). The first part can be handled with a simple substitution, while the second can use a logarithmic approach, leading to an elegant solution involving the natural logarithm. Happy integrating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad