Responder
To determine if a value \( y \) is a solution to the inequality \( 3 \geq \frac{1}{3}y \), follow these steps:
1. **Solve for \( y \):**
\[
y \leq 9
\]
2. **Evaluate the value:**
- If \( y \) is less than or equal to 9, it is a solution.
- If \( y \) is greater than 9, it is not a solution.
**Example:**
- \( y = 6 \): \( 6 \leq 9 \) → **Solution**
- \( y = 12 \): \( 12 > 9 \) → **Not a Solution**
So, any \( y \) that is **less than or equal to 9** satisfies the inequality.
Solución
To determine whether specific values of \( y \) satisfy the inequality:
\[
3 \geq \frac{1}{3}y
\]
we can solve the inequality for \( y \) and then evaluate each given value accordingly. Here's a step-by-step guide:
### Step 1: Solve the Inequality for \( y \)
Start with the original inequality:
\[
3 \geq \frac{1}{3}y
\]
To isolate \( y \), multiply both sides of the inequality by \( 3 \) (which is positive, so the direction of the inequality remains the same):
\[
3 \times 3 \geq y
\]
\[
9 \geq y
\]
This can be rewritten as:
\[
y \leq 9
\]
### Step 2: Interpret the Solution
The inequality \( y \leq 9 \) means that **any value of \( y \) that is less than or equal to 9** satisfies the original inequality \( 3 \geq \frac{1}{3}y \). Conversely, any value of \( y \) **greater than 9** does **not** satisfy the inequality.
### Step 3: Evaluate Specific Values
Let's apply this to some example values of \( y \):
1. **\( y = 6 \)**
\[
3 \geq \frac{1}{3} \times 6 \implies 3 \geq 2
\]
**Result:** True. \( 6 \leq 9 \), so \( y = 6 \) is a solution.
2. **\( y = 9 \)**
\[
3 \geq \frac{1}{3} \times 9 \implies 3 \geq 3
\]
**Result:** True. \( 9 \leq 9 \), so \( y = 9 \) is a solution.
3. **\( y = 12 \)**
\[
3 \geq \frac{1}{3} \times 12 \implies 3 \geq 4
\]
**Result:** False. \( 12 > 9 \), so \( y = 12 \) is **not** a solution.
4. **\( y = -3 \)**
\[
3 \geq \frac{1}{3} \times (-3) \implies 3 \geq -1
\]
**Result:** True. \( -3 \leq 9 \), so \( y = -3 \) is a solution.
### Summary
- **Values \( y \leq 9 \):** Satisfy the inequality \( 3 \geq \frac{1}{3}y \).
- **Values \( y > 9 \):** Do **not** satisfy the inequality.
If you have specific values you'd like to check, substitute them into the inequality using the method above to determine if they are solutions.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución