Pregunta
upstudy study bank question image url

4. Determine if each value is a solution of the inequality \( 3 \geq \frac{1}{3} y \)

Ask by Brooks Allan. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To determine if a value \( y \) is a solution to the inequality \( 3 \geq \frac{1}{3}y \), follow these steps: 1. **Solve for \( y \):** \[ y \leq 9 \] 2. **Evaluate the value:** - If \( y \) is less than or equal to 9, it is a solution. - If \( y \) is greater than 9, it is not a solution. **Example:** - \( y = 6 \): \( 6 \leq 9 \) → **Solution** - \( y = 12 \): \( 12 > 9 \) → **Not a Solution** So, any \( y \) that is **less than or equal to 9** satisfies the inequality.

Solución

To determine whether specific values of \( y \) satisfy the inequality: \[ 3 \geq \frac{1}{3}y \] we can solve the inequality for \( y \) and then evaluate each given value accordingly. Here's a step-by-step guide: ### Step 1: Solve the Inequality for \( y \) Start with the original inequality: \[ 3 \geq \frac{1}{3}y \] To isolate \( y \), multiply both sides of the inequality by \( 3 \) (which is positive, so the direction of the inequality remains the same): \[ 3 \times 3 \geq y \] \[ 9 \geq y \] This can be rewritten as: \[ y \leq 9 \] ### Step 2: Interpret the Solution The inequality \( y \leq 9 \) means that **any value of \( y \) that is less than or equal to 9** satisfies the original inequality \( 3 \geq \frac{1}{3}y \). Conversely, any value of \( y \) **greater than 9** does **not** satisfy the inequality. ### Step 3: Evaluate Specific Values Let's apply this to some example values of \( y \): 1. **\( y = 6 \)** \[ 3 \geq \frac{1}{3} \times 6 \implies 3 \geq 2 \] **Result:** True. \( 6 \leq 9 \), so \( y = 6 \) is a solution. 2. **\( y = 9 \)** \[ 3 \geq \frac{1}{3} \times 9 \implies 3 \geq 3 \] **Result:** True. \( 9 \leq 9 \), so \( y = 9 \) is a solution. 3. **\( y = 12 \)** \[ 3 \geq \frac{1}{3} \times 12 \implies 3 \geq 4 \] **Result:** False. \( 12 > 9 \), so \( y = 12 \) is **not** a solution. 4. **\( y = -3 \)** \[ 3 \geq \frac{1}{3} \times (-3) \implies 3 \geq -1 \] **Result:** True. \( -3 \leq 9 \), so \( y = -3 \) is a solution. ### Summary - **Values \( y \leq 9 \):** Satisfy the inequality \( 3 \geq \frac{1}{3}y \). - **Values \( y > 9 \):** Do **not** satisfy the inequality. If you have specific values you'd like to check, substitute them into the inequality using the method above to determine if they are solutions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To see if a value is a solution to the inequality \( 3 \geq \frac{1}{3} y \), simply plug the value of \( y \) into the inequality. If the left side is greater than or equal to the right side after calculation, then it is a solution. For example, if \( y = 6 \), then \( 3 \geq \frac{1}{3} (6) \) simplifies to \( 3 \geq 2 \), which is true. So, yes, \( y = 6 \) is a solution! Additionally, remember to flip the inequality if you multiply or divide by a negative number. It’s a common mistake—like thinking the sun rises in the east but forgetting it sets in the west! Always double-check each step to avoid confusion and keep your solutions accurate.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad