Let \( f(x)=\frac{x^{2}-4 x-32}{x-8} \). Find a) \( \lim _{x \rightarrow 8} f(x) \), b) \( \lim _{x \rightarrow 0} f(x) \), and c) \( \lim _{x \rightarrow-4} f(x) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve for the limits of the function \( f(x)=\frac{x^{2}-4x-32}{x-8} \), we will start by simplifying the function. First, let's factor the numerator \( x^2 - 4x - 32 \): 1. The numerator factors as follows: \[ x^2 - 4x - 32 = (x - 8)(x + 4) \] So, we can rewrite \( f(x) \): \[ f(x) = \frac{(x - 8)(x + 4)}{x - 8} \] For \( x \neq 8 \), this simplifies to: \[ f(x) = x + 4 \] Now we can find the limits: ### a) \( \lim_{x \rightarrow 8} f(x) \) As \( x \) approaches 8, we can directly substitute into the simplified function: \[ \lim_{x \rightarrow 8} f(x) = 8 + 4 = 12 \] ### b) \( \lim_{x \rightarrow 0} f(x) \) Again, substituting \( x = 0 \) into the simplified function: \[ \lim_{x \rightarrow 0} f(x) = 0 + 4 = 4 \] ### c) \( \lim_{x \rightarrow -4} f(x) \) Similarly, substituting \( x = -4 \) into the simplified function: \[ \lim_{x \rightarrow -4} f(x) = -4 + 4 = 0 \] In summary, the limits are: a) \( \lim_{x \rightarrow 8} f(x) = 12 \) b) \( \lim_{x \rightarrow 0} f(x) = 4 \) c) \( \lim_{x \rightarrow -4} f(x) = 0 \)