Find both the vector equation and the parametric equations of the line through \( (0,0,0) \) that is parallel to the line \( \mathbf{r}=\langle 3-2 t, 9+5 t, 2+3 t\rangle \), where \( t=0 \) corresponds to the given point. The vector equation is \( \langle x, y, z\rangle=\langle \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the vector equation of the line through \( (0,0,0) \) that is parallel to the line given by \( \mathbf{r}=\langle 3-2 t, 9+5 t, 2+3 t\rangle \), we first identify the direction vector of the given line. The coefficients of \( t \) in the vector equation imply the direction vector is \( \langle -2, 5, 3 \rangle \). Using the point \( (0,0,0) \) as the starting point, the vector equation for the new line is: \[ \langle x, y, z\rangle=\langle 0, 0, 0\rangle + t\langle -2, 5, 3\rangle = \langle -2t, 5t, 3t\rangle. \] Next, to find the parametric equations, we can write: \[ x = -2t, \quad y = 5t, \quad z = 3t. \] And there you have both the vector equation and the parametric equations of the line!