Let \( \mathbf{u}=\langle 0,-3,0\rangle \) and \( \mathbf{v}=\langle 0,3,0\rangle \). Compute \( |\mathbf{u} \times \mathbf{v}| \). Then sketch \( \mathbf{u}, \mathbf{v} \), and \( \mathbf{u} \times \mathbf{v} \). \( |\mathbf{u} \times \mathbf{v}|=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To compute \( |\mathbf{u} \times \mathbf{v}| \), let's first find the cross product \( \mathbf{u} \times \mathbf{v} \). Given: \[ \mathbf{u} = \langle 0, -3, 0 \rangle, \quad \mathbf{v} = \langle 0, 3, 0 \rangle, \] the formula for the cross product \( \mathbf{a} \times \mathbf{b} \) in three dimensions is given by the determinant of the following matrix: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -3 & 0 \\ 0 & 3 & 0 \end{vmatrix} \] Calculating this determinant: \[ \mathbf{u} \times \mathbf{v} = \mathbf{i}(0 \cdot 0 - 0 \cdot 3) - \mathbf{j}(0 \cdot 0 - 0 \cdot 0) + \mathbf{k}(0 \cdot 3 - (-3) \cdot 0) = \mathbf{0} - \mathbf{0} + \mathbf{k}(0) = \langle 0, 0, 0 \rangle \] So, \( \mathbf{u} \times \mathbf{v} = \langle 0, 0, 0 \rangle \). Now, to find the magnitude \( |\mathbf{u} \times \mathbf{v}| \): \[ |\mathbf{u} \times \mathbf{v}| = \sqrt{0^2 + 0^2 + 0^2} = 0. \] Thus, \( |\mathbf{u} \times \mathbf{v}| = 0 \). Now, as for the sketch: You can visualize \( \mathbf{u} \) pointing straight down on the negative y-axis while \( \mathbf{v} \) points straight up on the positive y-axis. They are collinear (lying along the same line) and thus do not create a plane with a non-zero area—hence the cross product being the zero vector. The sketch would show both vectors aligned along the y-axis, with the origin in the middle, but no vector emerging from their cross product since it is the zero vector. Final answer: \[ |\mathbf{u} \times \mathbf{v}| = 0. \]