Pregunta
upstudy study bank question image url

Let \( \mathbf{u}=\langle 0,-3,0\rangle \) and \( \mathbf{v}=\langle 0,3,0\rangle \). Compute \( |\mathbf{u} \times \mathbf{v}| \). Then sketch \( \mathbf{u}, \mathbf{v} \), and \( \mathbf{u} \times \mathbf{v} \). \( |\mathbf{u} \times \mathbf{v}|=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

Ask by Byrd Rojas. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ |\mathbf{u} \times \mathbf{v}| = 0 \]

Solución

Given the vectors: \[ \mathbf{u} = \langle 0, -3, 0 \rangle \quad \text{and} \quad \mathbf{v} = \langle 0, 3, 0 \rangle \] **Step 1: Compute the Cross Product \(\mathbf{u} \times \mathbf{v}\)** The cross product of two vectors \(\mathbf{u} = \langle u_1, u_2, u_3 \rangle\) and \(\mathbf{v} = \langle v_1, v_2, v_3 \rangle\) is given by: \[ \mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2,\ u_3 v_1 - u_1 v_3,\ u_1 v_2 - u_2 v_1 \rangle \] For \(\mathbf{u} = \langle 0, -3, 0 \rangle\) and \(\mathbf{v} = \langle 0, 3, 0 \rangle\): \[ \mathbf{u} \times \mathbf{v} = \langle (-3)(0) - (0)(3),\ (0)(0) - (0)(0),\ (0)(3) - (-3)(0) \rangle = \langle 0, 0, 0 \rangle \] **Step 2: Compute the Magnitude \(|\mathbf{u} \times \mathbf{v}|\)** The magnitude of the cross product is: \[ |\mathbf{u} \times \mathbf{v}| = \sqrt{0^2 + 0^2 + 0^2} = 0 \] **Conclusion:** \[ |\mathbf{u} \times \mathbf{v}| = 0 \] **Explanation:** The vectors \(\mathbf{u}\) and \(\mathbf{v}\) are **parallel** (in fact, they are scalar multiples of each other: \(\mathbf{v} = -\mathbf{u}\)). When two vectors are parallel, the sine of the angle between them is zero, resulting in a cross product magnitude of zero. This means there is no vector perpendicular to both \(\mathbf{u}\) and \(\mathbf{v}\) in this case. **Sketch:** 1. **Vector \(\mathbf{u}\)**: Points downward along the negative \(y\)-axis. 2. **Vector \(\mathbf{v}\)**: Points upward along the positive \(y\)-axis. 3. **Vector \(\mathbf{u} \times \mathbf{v}\)**: The zero vector, which has no direction and magnitude. ![Vectors Sketch](https://i.imgur.com/XYZ1234.png) *(Replace with an actual sketch if needed)* **Final Answer:** \[ |\mathbf{u} \times \mathbf{v}| = 0 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To compute \( |\mathbf{u} \times \mathbf{v}| \), let's first find the cross product \( \mathbf{u} \times \mathbf{v} \). Given: \[ \mathbf{u} = \langle 0, -3, 0 \rangle, \quad \mathbf{v} = \langle 0, 3, 0 \rangle, \] the formula for the cross product \( \mathbf{a} \times \mathbf{b} \) in three dimensions is given by the determinant of the following matrix: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -3 & 0 \\ 0 & 3 & 0 \end{vmatrix} \] Calculating this determinant: \[ \mathbf{u} \times \mathbf{v} = \mathbf{i}(0 \cdot 0 - 0 \cdot 3) - \mathbf{j}(0 \cdot 0 - 0 \cdot 0) + \mathbf{k}(0 \cdot 3 - (-3) \cdot 0) = \mathbf{0} - \mathbf{0} + \mathbf{k}(0) = \langle 0, 0, 0 \rangle \] So, \( \mathbf{u} \times \mathbf{v} = \langle 0, 0, 0 \rangle \). Now, to find the magnitude \( |\mathbf{u} \times \mathbf{v}| \): \[ |\mathbf{u} \times \mathbf{v}| = \sqrt{0^2 + 0^2 + 0^2} = 0. \] Thus, \( |\mathbf{u} \times \mathbf{v}| = 0 \). Now, as for the sketch: You can visualize \( \mathbf{u} \) pointing straight down on the negative y-axis while \( \mathbf{v} \) points straight up on the positive y-axis. They are collinear (lying along the same line) and thus do not create a plane with a non-zero area—hence the cross product being the zero vector. The sketch would show both vectors aligned along the y-axis, with the origin in the middle, but no vector emerging from their cross product since it is the zero vector. Final answer: \[ |\mathbf{u} \times \mathbf{v}| = 0. \]

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad