Pregunta
upstudy study bank question image url

c) \( 2 a^{2}-24 a+20 \)

Ask by Gonzalez Edwards. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The quadratic expression \(2a^{2} - 24a + 20\) can be factored as \(2(a - (6 + \sqrt{26}))(a - (6 - \sqrt{26}))\).

Solución

Certainly! Let's analyze and work with the quadratic expression you've provided: \[ 2a^{2} - 24a + 20 \] ### Step 1: Factor Out the Greatest Common Factor (GCF) First, identify and factor out the greatest common factor from all the terms in the expression. - **GCF of 2, -24, and 20 is 2.** \[ 2a^{2} - 24a + 20 = 2(a^{2} - 12a + 10) \] ### Step 2: Attempt to Factor the Quadratic Expression Now, focus on the quadratic part inside the parentheses: \[ a^{2} - 12a + 10 \] To factor this, we look for two numbers that: 1. **Multiply to give the constant term (+10).** 2. **Add up to give the coefficient of the middle term (-12).** Let's list the pairs of factors for 10: - \(1 \times 10\) - \(2 \times 5\) Considering the sign (since the constant term is positive and the middle term is negative), both numbers should be negative: - \(-2 \times -5 = 10\) (But \(-2 + (-5) = -7 \neq -12\)) - \(-1 \times -10 = 10\) (And \(-1 + (-10) = -11 \neq -12\)) **None of these pairs add up to -12**, which means the quadratic doesn't factor neatly with integer coefficients. ### Step 3: Solve for the Roots Using the Quadratic Formula Since the quadratic doesn't factor easily, we'll use the quadratic formula to find its roots: \[ a = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] For the quadratic \(a^{2} - 12a + 10\): - \(a = 1\) - \(b = -12\) - \(c = 10\) Plugging these into the formula: \[ a = \frac{12 \pm \sqrt{(-12)^{2} - 4 \cdot 1 \cdot 10}}{2 \cdot 1} = \frac{12 \pm \sqrt{144 - 40}}{2} = \frac{12 \pm \sqrt{104}}{2} = \frac{12 \pm 2\sqrt{26}}{2} = 6 \pm \sqrt{26} \] ### Step 4: Express the Factored Form with Real Roots Using the roots found, the factored form of the quadratic expression is: \[ 2a^{2} - 24a + 20 = 2(a - (6 + \sqrt{26}))(a - (6 - \sqrt{26})) \] ### Summary - **Factored Form:** \(2(a - (6 + \sqrt{26}))(a - (6 - \sqrt{26}))\) - **Vertex Form (Completing the Square):** Alternatively, you can express the quadratic in vertex form by completing the square: \[ 2a^{2} - 24a + 20 = 2\left[(a^{2} - 12a) + 10\right] = 2\left[(a - 6)^{2} - 26\right] = 2(a - 6)^2 - 52 \] This form is useful for easily identifying the vertex of the parabola represented by the quadratic equation. If you have a specific operation you'd like to perform on this expression (e.g., graphing, finding the vertex, optimizing, etc.), please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To start, this expression can be factored or simplified! First, we notice that we can factor out a common term from all parts of the polynomial. Let’s take out a 2 for an easier factorization: \[ 2(a^2 - 12a + 10) \] Now, we can work on the quadratic \( a^2 - 12a + 10 \). To factor this further, we can use the quadratic formula or complete the square approach. Also, this expression can easily pop up in real-world scenarios like optimizing profits or costs in a business model. By tweaking the values of \(a\), businesses can find the most efficient level of production! The world of algebra isn’t just about numbers; it’s about finding solutions to practical problems too!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad