Responder
Solutions for \( x \) are 4 and -1. The inequality \( x^2 - x + 6 < 2(x + 2) \) holds true for \( 1 < x < 2 \). The function \( f(x) = \frac{\sqrt{x+2}}{3 - 3x^2} \) is non-real for \( x < -2 \), undefined at \( x = 1 \) and \( x = -1 \), and positive for \( -1 < x < 1 \). The expression \( \frac{2^x - 2^{-x}}{4^x - 1} \) simplifies to \( \frac{1}{2^x} \).
Solución
Let's solve the problem step by step.
### 1.1 Solve for \( x \)
#### 1.1.1 Solve the equation \( x = \frac{4}{x} + 3 \)
To eliminate the fraction, we can multiply both sides by \( x \) (assuming \( x \neq 0 \)):
\[
x^2 = 4 + 3x
\]
Rearranging gives us:
\[
x^2 - 3x - 4 = 0
\]
Now, we can solve this quadratic equation using the quadratic formula:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
where \( a = 1, b = -3, c = -4 \).
Calculating the discriminant:
\[
b^2 - 4ac = (-3)^2 - 4(1)(-4) = 9 + 16 = 25
\]
Since the discriminant is positive, the roots are real.
Now, substituting into the quadratic formula:
\[
x = \frac{3 \pm \sqrt{25}}{2} = \frac{3 \pm 5}{2}
\]
This gives us two solutions:
\[
x_1 = \frac{8}{2} = 4, \quad x_2 = \frac{-2}{2} = -1
\]
#### 1.1.2 Check if the roots are real or unreal
The roots we found are \( x = 4 \) and \( x = -1 \), both of which are real.
#### 1.1.3 Solve the inequality \( x^2 - x + 6 < 2(x + 2) \)
First, simplify the inequality:
\[
x^2 - x + 6 < 2x + 4
\]
Rearranging gives:
\[
x^2 - 3x + 2 < 0
\]
Factoring the quadratic:
\[
(x - 1)(x - 2) < 0
\]
The critical points are \( x = 1 \) and \( x = 2 \). We can test intervals to find where the product is negative:
- For \( x < 1 \): Choose \( x = 0 \) → \( (0 - 1)(0 - 2) = 2 > 0 \)
- For \( 1 < x < 2 \): Choose \( x = 1.5 \) → \( (1.5 - 1)(1.5 - 2) = -0.25 < 0 \)
- For \( x > 2 \): Choose \( x = 3 \) → \( (3 - 1)(3 - 2) = 2 > 0 \)
Thus, the solution to the inequality is:
\[
1 < x < 2
\]
### 1.2 Analyze the function \( f(x) = \frac{\sqrt{x+2}}{3 - 3x^2} \)
#### 1.2.2 For which values of \( x \) is \( f(x) \) non-real?
The function \( f(x) \) is non-real when the square root is negative:
\[
x + 2 \geq 0 \implies x \geq -2
\]
Thus, \( f(x) \) is real for \( x \geq -2 \).
#### 1.2.3 For which values of \( x \) is \( f(x) \) undefined?
The function is undefined when the denominator is zero:
\[
3 - 3x^2 = 0 \implies 3x^2 = 3 \implies x^2 = 1 \implies x = 1 \text{ or } x = -1
\]
Thus, \( f(x) \) is undefined at \( x = 1 \) and \( x = -1 \).
#### 1.2.4 For which values of \( x \) is \( f(x) > 0 \)?
For \( f(x) > 0 \), both the numerator and denominator must be positive:
1. \( \sqrt{x + 2} > 0 \) implies \( x + 2 > 0 \) or \( x > -2 \).
2. \( 3 - 3x^2 > 0 \) implies \( 3x^2 < 3 \) or \( x^2 < 1 \) which gives \( -1 < x < 1 \).
Combining these conditions:
- From \( x > -2 \) and \( -1 < x < 1 \), we find:
\[
-1 < x < 1
\]
### 1.3 Simplify \( \frac{2^x - 2^{-x}}{4^x - 1} \)
We can rewrite \( 4^x \) as \( (2^2)^x = (2^x)^2 \):
\[
\frac{2^x - 2^{-x}}{(2^x)^2 - 1}
\]
The denominator can be factored using the difference of squares:
\[
(2^x - 1)(2^x + 1)
\]
Thus, we have:
\[
\frac{2^x - 2^{-x}}{(2^x - 1)(2^x + 1)}
\]
Now, rewrite \( 2^{-x} \) as \( \frac{1}{2^x} \):
\[
\frac{2^x - \frac{1}{2^x}}{(2^x - 1)(2^x + 1)} = \frac{2^{2x} - 1}{2^x(2^x - 1)(2^x + 1)}
\]
This simplifies to:
\[
\frac{(2^x - 1)(2^x + 1)}{2^x(2^x - 1)(2^x + 1)} = \frac{1}{2^x}
\]
Thus, the final simplified expression is:
\[
\frac{1}{2^x}
\]
### Summary of Results
1.1.1 Solutions: \( x = 4, -1 \) (both real)
1.1.3 Inequality solution: \( 1 < x < 2 \)
1.2.2 Non-real values: \( x < -2 \)
1.2.3 Undefined values: \( x = 1, -1 \)
1.2.4 Positive values: \( -1 < x < 1 \)
1.3 Simplified expression: \( \frac{1}{2^x} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución