Pregunta
upstudy study bank question image url

Seloct the correct location on the solution path. Sean was given the following exponential equation to solve. \[ \begin{aligned} 7^{(2 x-2)} & =49^{(3 x+2)} \\ 7^{(2 x-2)} & =49^{(3 x+2)} \\ 7^{(2 x-2)} & =\left(7^{2}\right)^{(3 x+2)} \\ 7^{(2 x-2)} & =7^{(6 x+2)} \\ 2 x-2 & =6 x+2 \\ -4 x-2 & =2 \\ -4 x & =4 \\ x & =-1\end{aligned} \]

Ask by Bowers Wright. in the United Arab Emirates
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct solution is \( x = -\frac{3}{2} \).

Solución

It looks like there's an error in the solution path provided for Sean's exponential equation. Let's walk through the steps to identify and correct the mistake. ### Given Equation: \[ 7^{(2x - 2)} = 49^{(3x + 2)} \] ### Step-by-Step Solution: 1. **Express Both Sides with the Same Base:** - Since \(49 = 7^2\), we can rewrite the equation as: \[ 7^{(2x - 2)} = (7^2)^{(3x + 2)} \] 2. **Apply the Power of a Power Property:** - \((a^m)^n = a^{m \cdot n}\), so: \[ 7^{(2x - 2)} = 7^{2 \cdot (3x + 2)} \] \[ 7^{(2x - 2)} = 7^{6x + 4} \] **_Error Identified Here:_** - In the original solution, this step was incorrectly simplified to \(7^{6x + 2}\) instead of \(7^{6x + 4}\). 3. **Set the Exponents Equal to Each Other:** \[ 2x - 2 = 6x + 4 \] 4. **Solve for \(x\):** \[ 2x - 6x = 4 + 2 \] \[ -4x = 6 \] \[ x = -\frac{6}{4} \] \[ x = -\frac{3}{2} \] ### Correct Solution: \[ x = -\frac{3}{2} \] ### Summary of the Correction: - **Incorrect Step:** \[ 7^{(2x - 2)} = 7^{6x + 2} \] - **Corrected Step:** \[ 7^{(2x - 2)} = 7^{6x + 4} \] By correcting the exponent from \(6x + 2\) to \(6x + 4\), the final solution for \(x\) becomes \(-\frac{3}{2}\) instead of \(-1\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the exponential equation \(7^{(2x-2)} = 49^{(3x+2)}\), the key insight is realizing that 49 can be rewritten as \(7^2\). This transformation allows us to express the equation entirely in terms of base 7, making it easier to equate the exponents. Through this process, Sean effectively streamlined his path to the solution, ultimately arriving at \(x = -1\). In the world of math, exponential equations are not just academic exercises; they're used in various real-world situations such as calculating population growth, radioactive decay, or even in finance for compound interest! Understanding how to manipulate exponentials provides valuable tools for interpreting and solving such applied problems.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad