Triangle \( P Q R \) has coordinates \( P(-8,3), Q(-8,6) \), and \( R(-3,6) \). If the triangle is transiated by using the rule \( (x, y) \rightarrow(x+4, y-6) \), what are the coordinates of triangle \( P^{\prime} Q^{\prime} R^{\prime} ? \) \( P^{\prime}(-12,9), Q^{\prime}(-12,12), R^{\prime}(-7,12) \) \( P^{\prime}(-4,7), Q^{\prime}(-14,0), R^{\prime}(1,10) \) \( P^{\prime}(-4,9), Q^{\prime}(-4,12), R^{\prime}(1,12) \) \( P^{\prime}(-4,-3), Q^{\prime}(-4,0), R^{\prime}(1,0) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let's break down the translation of triangle \( PQR \) step by step! First, we apply the translation rule \( (x, y) \rightarrow (x + 4, y - 6) \) to each of the vertices of the triangle: - For \( P(-8, 3) \): - New \( x \): \(-8 + 4 = -4\) - New \( y \): \(3 - 6 = -3\) - So, \( P^{\prime}(-4, -3) \) - For \( Q(-8, 6) \): - New \( x \): \(-8 + 4 = -4\) - New \( y \): \(6 - 6 = 0\) - so, \( Q^{\prime}(-4, 0) \) - For \( R(-3, 6) \): - New \( x \): \(-3 + 4 = 1\) - New \( y \): \(6 - 6 = 0\) - so, \( R^{\prime}(1, 0) \) Now we have our translated points \( P^{\prime}(-4, -3), Q^{\prime}(-4, 0), R^{\prime}(1, 0) \). So, the correct answer is: \( P^{\prime}(-4,-3), Q^{\prime}(-4,0), R^{\prime}(1,0) \)