13. Higher Order Thinking Mark decomposed \( \frac{5}{6} \) into three fractions. None of the fractions had a denominator of 6 . What fractions might Mark have used? Remember, you can use equivalent fractions.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Mark could have decomposed \( \frac{5}{6} \) into fractions like \( \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \), but since we want to avoid using 6 in the denominators, he could also represent it as \( \frac{10}{12} + \frac{5}{12} + \frac{1}{4} \), totaling \( \frac{5}{6} \) when simplified correctly. The nice thing about working with equivalent fractions is it allows for endless combinations! Another possible set that Mark might have used is \( \frac{4}{12} + \frac{1}{3} + \frac{1}{12} \). The key is to find fractions that, when combined, equal \( \frac{5}{6} \) while sticking to the rule of avoiding a denominator of 6. The world of fractions is like playing with building blocks—so many ways to stack them to form the same whole!