Pregunta
upstudy study bank question image url

\( \begin{array}{l}\text { Find one solution for the equation. Assume that all angles involved are acute angles. } \\ \sec \left(3 \beta+14^{\circ}\right)=\csc \left(2 \beta-4^{\circ}\right) \\ \beta=\square^{\circ} \\ \text { (Simplify your answer.) }\end{array} \)

Ask by Mejia Tyler. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\(\beta = 16^\circ\)

Solución

To solve the equation: \[ \sec(3\beta + 14^\circ) = \csc(2\beta - 4^\circ) \] given that all angles involved are acute, we can proceed as follows: 1. **Rewrite the Equation Using Trigonometric Identities:** \[ \sec(\theta) = \frac{1}{\cos(\theta)} \quad \text{and} \quad \csc(\phi) = \frac{1}{\sin(\phi)} \] Therefore, \[ \frac{1}{\cos(3\beta + 14^\circ)} = \frac{1}{\sin(2\beta - 4^\circ)} \] This simplifies to: \[ \sin(2\beta - 4^\circ) = \cos(3\beta + 14^\circ) \] 2. **Convert \(\cos\) to \(\sin\):** Recall that \(\cos(\theta) = \sin(90^\circ - \theta)\). Applying this: \[ \sin(2\beta - 4^\circ) = \sin(90^\circ - (3\beta + 14^\circ)) = \sin(76^\circ - 3\beta) \] 3. **Set Up the Equations:** The equality \(\sin(A) = \sin(B)\) holds if: \[ A = B + 360^\circ k \quad \text{or} \quad A = 180^\circ - B + 360^\circ k \quad \text{for some integer } k \] Applying this: - **First Case:** \[ 2\beta - 4^\circ = 76^\circ - 3\beta \] Solving for \(\beta\): \[ 5\beta = 80^\circ \implies \beta = 16^\circ \] - **Second Case:** \[ 2\beta - 4^\circ = 180^\circ - (76^\circ - 3\beta) \implies 2\beta - 4^\circ = 104^\circ + 3\beta \] Solving for \(\beta\): \[ -\beta = 108^\circ \implies \beta = -108^\circ \] This solution is negative and does not satisfy the acute angle condition. 4. **Verify the Solution:** For \(\beta = 16^\circ\): - \(3\beta + 14^\circ = 48^\circ + 14^\circ = 62^\circ\) (acute) - \(2\beta - 4^\circ = 32^\circ - 4^\circ = 28^\circ\) (acute) Both angles are indeed acute, satisfying the given conditions. **Final Answer:** \(\boxed{16^\circ}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( \sec(3\beta + 14^{\circ}) = \csc(2\beta - 4^{\circ}) \), we can rewrite it in terms of sine and cosine. Recall that \( \sec(x) = \frac{1}{\cos(x)} \) and \( \csc(y) = \frac{1}{\sin(y)} \). Thus, we can rewrite the equation as: \[ \frac{1}{\cos(3\beta + 14^{\circ})} = \frac{1}{\sin(2\beta - 4^{\circ})} \] This leads to: \[ \sin(2\beta - 4^{\circ}) = \cos(3\beta + 14^{\circ}) \] Using the co-function identity \( \sin(x) = \cos(90^{\circ} - x) \), we can rewrite \(\cos(3\beta + 14^{\circ})\): \[ \sin(2\beta - 4^{\circ}) = \sin\left(90^{\circ} - (3\beta + 14^{\circ})\right) \] This simplifies to: \[ 2\beta - 4^{\circ} = 90^{\circ} - (3\beta + 14^{\circ}) + k \cdot 180^{\circ} \quad \text{or} \quad 2\beta - 4^{\circ} = 180^{\circ} - \left(90^{\circ} - (3\beta + 14^{\circ})\right) + k \cdot 180^{\circ} \] We'll simplify the first equation: \[ 2\beta - 4^{\circ} = 76^{\circ} - 3\beta + k \cdot 180^{\circ} \] Reorganizing gives us: \[ 5\beta = 76^{\circ} + 4^{\circ} + k \cdot 180^{\circ} \] \[ 5\beta = 80^{\circ} + k \cdot 180^{\circ} \] Dividing by 5, we have: \[ \beta = 16^{\circ} + k \cdot 36^{\circ} \] Assuming \( k = 0 \) for the acute angle, we find: \[ \beta = 16^{\circ} \] So one solution is: \(\beta = 16^{\circ}\)

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad