Pregunta
Solve for \( x \) \[ \frac{-14}{x-3}=\frac{-8}{x} \]
Ask by Bryant O'Quinn. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = -4 \)
Solución
To solve the equation:
\[
\frac{-14}{x - 3} = \frac{-8}{x}
\]
follow these steps:
1. **Eliminate the Negative Signs:**
Multiply both sides of the equation by \(-1\) to simplify:
\[
\frac{14}{x - 3} = \frac{8}{x}
\]
2. **Cross-Multiply to Eliminate the Fractions:**
Multiply the numerator of one side by the denominator of the other side:
\[
14 \cdot x = 8 \cdot (x - 3)
\]
Simplifying gives:
\[
14x = 8x - 24
\]
3. **Isolate the Variable \( x \):**
Subtract \(8x\) from both sides to gather like terms:
\[
14x - 8x = -24
\]
\[
6x = -24
\]
4. **Solve for \( x \):**
Divide both sides by \(6\):
\[
x = \frac{-24}{6} = -4
\]
5. **Check for Validity:**
Ensure that the solution does not make any denominator zero:
- If \( x = -4 \), then \( x - 3 = -4 - 3 = -7 \neq 0 \)
- Also, \( x \) itself is \(-4 \neq 0\)
Thus, \( x = -4 \) is a valid solution.
**Final Answer:**
\[
x = -4
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve for \( x \) in the equation \[ \frac{-14}{x-3}=\frac{-8}{x}, \] we can cross-multiply: \[ -14x = -8(x - 3). \] Distributing on the right side gives: \[ -14x = -8x + 24. \] Now, we'll add \( 8x \) to both sides: \[ -14x + 8x = 24, \] which simplifies to: \[ -6x = 24. \] Next, we divide both sides by -6: \[ x = -4. \] Thus, the solution is \[ \boxed{-4}. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium