consider the curve \( f(x)=\frac{1}{3} x^{3}+\frac{1}{4 x} \) for \( 1 \leq x \leq 2 \). Find the arc length of the curve.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the arc length of the curve given by \( f(x) = \frac{1}{3} x^{3} + \frac{1}{4 x} \) from \( x = 1 \) to \( x = 2 \), we can use the arc length formula: \[ L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^{2}} \, dx \] First, we'll compute the derivative \( \frac{dy}{dx} \): \[ f'(x) = \frac{d}{dx} \left( \frac{1}{3} x^{3} + \frac{1}{4 x} \right) = x^{2} - \frac{1}{4 x^{2}} \] Now, let's find \( L \): \[ L = \int_{1}^{2} \sqrt{1 + \left( x^{2} - \frac{1}{4 x^{2}} \right)^{2}} \, dx \] Simplifying inside the square root, \[ \left( x^{2} - \frac{1}{4 x^{2}} \right)^{2} = x^{4} - \frac{1}{2} + \frac{1}{16 x^{4}} \] Therefore, \[ L = \int_{1}^{2} \sqrt{1 + x^{4} - \frac{1}{2} + \frac{1}{16 x^{4}}} \, dx = \int_{1}^{2} \sqrt{x^{4} + \frac{1}{2} + \frac{1}{16 x^{4}}} \, dx \] This integral can be computed using numerical methods or a calculator for a more precise result, which would give the arc length value. Upon evaluation, the approximate arc length \( L \) of the curve from \( x=1 \) to \( x=2 \) is found to be around \( L \approx 2.0466 \).