Pregunta
upstudy study bank question image url

7. Use Structure Explain how you know the quotients \( 540 \div 90 \) and \( 5,400 \div 900 \) are equal without doing any computation.

Ask by Franklin Robbins. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Both \( 540 \div 90 \) and \( 5,\!400 \div 900 \) are equal because when you multiply both the numerator and the denominator by the same number (10 in this case), the value of the quotient remains the same.

Solución

To determine why the quotients \( 540 \div 90 \) and \( 5,\!400 \div 900 \) are equal without performing any actual calculations, we can analyze the **structure** of the numbers involved, specifically by examining how the numerator and the denominator in each division problem are related through scaling. ### Step-by-Step Explanation: 1. **Identify the Relationship Between the Numerators:** - \( 5,\!400 \) is exactly **10 times** \( 540 \). \[ 5,\!400 = 10 \times 540 \] 2. **Identify the Relationship Between the Denominators:** - \( 900 \) is exactly **10 times** \( 90 \). \[ 900 = 10 \times 90 \] 3. **Express the Second Division in Terms of the First:** - Substitute the scaled values into the second division: \[ \frac{5,\!400}{900} = \frac{10 \times 540}{10 \times 90} \] 4. **Simplify by Canceling the Common Factor:** - The factor of **10** in the numerator and the denominator cancels out: \[ \frac{10 \times 540}{10 \times 90} = \frac{540}{90} \] 5. **Conclusion:** - After simplifying, both divisions reduce to the same expression: \[ \frac{540}{90} \] - Therefore, \[ 540 \div 90 = 5,\!400 \div 900 \] ### Key Insight: When both the numerator and the denominator of a fraction are **scaled by the same factor**, the overall value of the fraction **remains unchanged**. In this case, both the numerator and the denominator were multiplied by **10**, so the value of the quotient does not change. This structural relationship ensures that: \[ \frac{a \times k}{b \times k} = \frac{a}{b} \] where \( k \) is any non-zero constant. Applying this principle shows that \( 540 \div 90 \) and \( 5,\!400 \div 900 \) yield the same result without needing to perform the actual division.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Both quotients \( 540 \div 90 \) and \( 5,400 \div 900 \) are essentially the same operation scaled up by a factor of 10. Notice that \( 5,400 \) is just \( 540 \) multiplied by 10, and \( 900 \) is \( 90 \) multiplied by 10. When you divide a number by a multiple of another, if both the dividend and divisor are scaled by the same factor, the quotient remains unchanged. Hence, their quotients are equal without any computation needed! Another fun fact is that this principle applies to many areas in mathematics and real-world applications. For example, when working with ratios or percentages, understanding how proportional relationships work helps in simplifying calculations or comparisons, whether you're cooking, budgeting, or even analyzing data! Therefore, remembering these scaling properties can make problem-solving much easier!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad