Simplify by using the imaginary unit \( i \) \( \frac{-10 \pm \sqrt{-48}}{2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Let's simplify the expression \( \frac{-10 \pm \sqrt{-48}}{2} \). We start by handling the square root of the negative number. Since \( \sqrt{-48} \) can be rewritten using the imaginary unit \( i \): \[ \sqrt{-48} = \sqrt{48} \cdot \sqrt{-1} = \sqrt{48} \cdot i \] Next, we simplify \( \sqrt{48} \): \[ \sqrt{48} = \sqrt{16 \cdot 3} = 4\sqrt{3} \] So, we have: \[ \sqrt{-48} = 4\sqrt{3} i \] Now, substitute this back into the original expression: \[ \frac{-10 \pm 4\sqrt{3} i}{2} \] Now, we can separate and simplify: \[ = \frac{-10}{2} \pm \frac{4\sqrt{3} i}{2} \] \[ = -5 \pm 2\sqrt{3} i \] Thus, the simplified expression is: \[ -5 \pm 2\sqrt{3} i \]