Responder
The distances between the points are as follows:
- \( N(-4,5) \) to \( O(6,0) \): \( 5\sqrt{5} \) units (approximately 11.18 units)
- \( N(-4,5) \) to \( P(3,-6) \): \( \sqrt{170} \) units (approximately 13.04 units)
- \( N(-4,5) \) to \( Q(-7,-1) \): \( 3\sqrt{5} \) units (approximately 6.71 units)
- \( O(6,0) \) to \( P(3,-6) \): \( 3\sqrt{5} \) units (approximately 6.71 units)
- \( O(6,0) \) to \( Q(-7,-1) \): \( \sqrt{170} \) units (approximately 13.04 units)
- \( P(3,-6) \) to \( Q(-7,-1) \): \( 5\sqrt{5} \) units (approximately 11.18 units)
Solución
Sure! Let's calculate the distances between each pair of points \( N(-4,5) \), \( O(6,0) \), \( P(3,-6) \), and \( Q(-7,-1) \) using the **Distance Formula**.
### **Distance Formula**
The distance \( d \) between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
### **Calculations**
We'll calculate the distance for each pair:
1. **Distance between \( N(-4,5) \) and \( O(6,0) \):**
\[
\begin{align*}
\Delta x &= 6 - (-4) = 10 \\
\Delta y &= 0 - 5 = -5 \\
d &= \sqrt{10^2 + (-5)^2} = \sqrt{100 + 25} = \sqrt{125} = 5\sqrt{5} \approx 11.18
\end{align*}
\]
2. **Distance between \( N(-4,5) \) and \( P(3,-6) \):**
\[
\begin{align*}
\Delta x &= 3 - (-4) = 7 \\
\Delta y &= -6 - 5 = -11 \\
d &= \sqrt{7^2 + (-11)^2} = \sqrt{49 + 121} = \sqrt{170} \approx 13.04
\end{align*}
\]
3. **Distance between \( N(-4,5) \) and \( Q(-7,-1) \):**
\[
\begin{align*}
\Delta x &= -7 - (-4) = -3 \\
\Delta y &= -1 - 5 = -6 \\
d &= \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5} \approx 6.71
\end{align*}
\]
4. **Distance between \( O(6,0) \) and \( P(3,-6) \):**
\[
\begin{align*}
\Delta x &= 3 - 6 = -3 \\
\Delta y &= -6 - 0 = -6 \\
d &= \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5} \approx 6.71
\end{align*}
\]
5. **Distance between \( O(6,0) \) and \( Q(-7,-1) \):**
\[
\begin{align*}
\Delta x &= -7 - 6 = -13 \\
\Delta y &= -1 - 0 = -1 \\
d &= \sqrt{(-13)^2 + (-1)^2} = \sqrt{169 + 1} = \sqrt{170} \approx 13.04
\end{align*}
\]
6. **Distance between \( P(3,-6) \) and \( Q(-7,-1) \):**
\[
\begin{align*}
\Delta x &= -7 - 3 = -10 \\
\Delta y &= -1 - (-6) = 5 \\
d &= \sqrt{(-10)^2 + 5^2} = \sqrt{100 + 25} = \sqrt{125} = 5\sqrt{5} \approx 11.18
\end{align*}
\]
### **Summary of Distances**
| **Pair** | **Distance (Exact Form)** | **Approximate Distance** |
|----------|---------------------------|--------------------------|
| N & O | \( 5\sqrt{5} \) | 11.18 units |
| N & P | \( \sqrt{170} \) | 13.04 units |
| N & Q | \( 3\sqrt{5} \) | 6.71 units |
| O & P | \( 3\sqrt{5} \) | 6.71 units |
| O & Q | \( \sqrt{170} \) | 13.04 units |
| P & Q | \( 5\sqrt{5} \) | 11.18 units |
### **Visualization**
To better understand the distances, you can plot the points on a coordinate plane:
- **N(-4, 5)**
- **O(6, 0)**
- **P(3, -6)**
- **Q(-7, -1)**
Connecting each pair of points will help visualize the distances calculated above.
### **Conclusion**
Using the Distance Formula, we've calculated all pairwise distances between the points \( N \), \( O \), \( P \), and \( Q \). This method is fundamental in coordinate geometry for determining the length between any two points in a plane.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución