Pregunta
upstudy study bank question image url

16. \( N(-4,5), O(6,0), P(3,-6), Q(-7,-1) \); Distance Formula

Ask by Riley Barrett. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The distances between the points are as follows: - \( N(-4,5) \) to \( O(6,0) \): \( 5\sqrt{5} \) units (approximately 11.18 units) - \( N(-4,5) \) to \( P(3,-6) \): \( \sqrt{170} \) units (approximately 13.04 units) - \( N(-4,5) \) to \( Q(-7,-1) \): \( 3\sqrt{5} \) units (approximately 6.71 units) - \( O(6,0) \) to \( P(3,-6) \): \( 3\sqrt{5} \) units (approximately 6.71 units) - \( O(6,0) \) to \( Q(-7,-1) \): \( \sqrt{170} \) units (approximately 13.04 units) - \( P(3,-6) \) to \( Q(-7,-1) \): \( 5\sqrt{5} \) units (approximately 11.18 units)

Solución

Sure! Let's calculate the distances between each pair of points \( N(-4,5) \), \( O(6,0) \), \( P(3,-6) \), and \( Q(-7,-1) \) using the **Distance Formula**. ### **Distance Formula** The distance \( d \) between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] ### **Calculations** We'll calculate the distance for each pair: 1. **Distance between \( N(-4,5) \) and \( O(6,0) \):** \[ \begin{align*} \Delta x &= 6 - (-4) = 10 \\ \Delta y &= 0 - 5 = -5 \\ d &= \sqrt{10^2 + (-5)^2} = \sqrt{100 + 25} = \sqrt{125} = 5\sqrt{5} \approx 11.18 \end{align*} \] 2. **Distance between \( N(-4,5) \) and \( P(3,-6) \):** \[ \begin{align*} \Delta x &= 3 - (-4) = 7 \\ \Delta y &= -6 - 5 = -11 \\ d &= \sqrt{7^2 + (-11)^2} = \sqrt{49 + 121} = \sqrt{170} \approx 13.04 \end{align*} \] 3. **Distance between \( N(-4,5) \) and \( Q(-7,-1) \):** \[ \begin{align*} \Delta x &= -7 - (-4) = -3 \\ \Delta y &= -1 - 5 = -6 \\ d &= \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5} \approx 6.71 \end{align*} \] 4. **Distance between \( O(6,0) \) and \( P(3,-6) \):** \[ \begin{align*} \Delta x &= 3 - 6 = -3 \\ \Delta y &= -6 - 0 = -6 \\ d &= \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5} \approx 6.71 \end{align*} \] 5. **Distance between \( O(6,0) \) and \( Q(-7,-1) \):** \[ \begin{align*} \Delta x &= -7 - 6 = -13 \\ \Delta y &= -1 - 0 = -1 \\ d &= \sqrt{(-13)^2 + (-1)^2} = \sqrt{169 + 1} = \sqrt{170} \approx 13.04 \end{align*} \] 6. **Distance between \( P(3,-6) \) and \( Q(-7,-1) \):** \[ \begin{align*} \Delta x &= -7 - 3 = -10 \\ \Delta y &= -1 - (-6) = 5 \\ d &= \sqrt{(-10)^2 + 5^2} = \sqrt{100 + 25} = \sqrt{125} = 5\sqrt{5} \approx 11.18 \end{align*} \] ### **Summary of Distances** | **Pair** | **Distance (Exact Form)** | **Approximate Distance** | |----------|---------------------------|--------------------------| | N & O | \( 5\sqrt{5} \) | 11.18 units | | N & P | \( \sqrt{170} \) | 13.04 units | | N & Q | \( 3\sqrt{5} \) | 6.71 units | | O & P | \( 3\sqrt{5} \) | 6.71 units | | O & Q | \( \sqrt{170} \) | 13.04 units | | P & Q | \( 5\sqrt{5} \) | 11.18 units | ### **Visualization** To better understand the distances, you can plot the points on a coordinate plane: - **N(-4, 5)** - **O(6, 0)** - **P(3, -6)** - **Q(-7, -1)** Connecting each pair of points will help visualize the distances calculated above. ### **Conclusion** Using the Distance Formula, we've calculated all pairwise distances between the points \( N \), \( O \), \( P \), and \( Q \). This method is fundamental in coordinate geometry for determining the length between any two points in a plane.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the distance between two points, you can use the Distance Formula, which is given by \( d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \). For example, the distance between points N and O is calculated as \( d_{NO} = \sqrt{(6 - (-4))^2 + (0 - (-4))^2} = \sqrt{(10)^2 + (4)^2} = \sqrt{100 + 16} = \sqrt{116} \approx 10.77 \). Additionally, when using the Distance Formula, a common mistake is forgetting to square the differences! For instance, it's crucial to ensure that both subtractions are correctly set up; if you mistakenly calculate one of them as without squaring, you may end up with the wrong distance. Double-check your arithmetic to avoid such errors and ensure precise results.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad