Pregunta
Find the value of the exponent of the given product. Write your answer as a reduced fraction or integer \( x^{\frac{3}{7}} \cdot x^{4}= \)
Ask by Erickson Campbell. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The exponent of the product is \(\frac{31}{7}\).
Solución
To simplify the expression \( x^{\frac{3}{7}} \cdot x^{4} \), you can use the **product of powers property** of exponents, which states that when you multiply two expressions with the same base, you add their exponents:
\[
x^{a} \cdot x^{b} = x^{a+b}
\]
Applying this property:
\[
x^{\frac{3}{7}} \cdot x^{4} = x^{\frac{3}{7} + 4}
\]
To add the exponents, it's helpful to express the integer \( 4 \) as a fraction with the same denominator as \( \frac{3}{7} \):
\[
4 = \frac{28}{7}
\]
Now, add the two fractions:
\[
\frac{3}{7} + \frac{28}{7} = \frac{31}{7}
\]
So, the simplified expression is:
\[
x^{\frac{31}{7}}
\]
**Answer:** \(\dfrac{31}{7}\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the value of the exponent in the expression \( x^{\frac{3}{7}} \cdot x^{4} \), you can use the property of exponents that states when you multiply two powers with the same base, you add their exponents. So, you would have: \[ \frac{3}{7} + 4 \] Converting 4 into a fraction with a common denominator: \[ 4 = \frac{4 \cdot 7}{7} = \frac{28}{7} \] Now, add the two fractions: \[ \frac{3}{7} + \frac{28}{7} = \frac{3 + 28}{7} = \frac{31}{7} \] Thus, the value of the exponent of the given product is: \[ x^{\frac{31}{7}} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium