Pregunta
\begin{tabular}{l} MA.912.NSO.1.1 \\ 3 of 3 \\ Simplify using the laws of exponents. \\ \( 25^{\frac{-3}{2}} \) \\ - -125 \\ \hline\( \frac{1}{125} \) \\ \hline\( \frac{1}{15} \)\end{tabular}
Ask by Joseph Mcguire. in the United States
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 25^{-\frac{3}{2}} = \frac{1}{125} \)
Solución
Calculate or simplify the expression \( 25^{-\frac{3}{2}} \).
Calculate the value by following steps:
- step0: Calculate:
\(25^{-\frac{3}{2}}\)
- step1: Express with a positive exponent:
\(\frac{1}{25^{\frac{3}{2}}}\)
- step2: Evaluate the power:
\(\frac{1}{125}\)
The simplified form of \(25^{-\frac{3}{2}}\) is \(\frac{1}{125}\) or \(0.008\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To simplify \( 25^{\frac{-3}{2}} \), we can break it down step by step. First, recognize that \( 25 \) can be rewritten as \( 5^2 \). So, we have: \[ 25^{\frac{-3}{2}} = (5^2)^{\frac{-3}{2}} = 5^{-3} \] Now, applying the negative exponent rule, \( a^{-n} = \frac{1}{a^n} \) gives us: \[ 5^{-3} = \frac{1}{5^3} = \frac{1}{125} \] So the answer is \( \frac{1}{125} \). The other options mentioned (-125 and \(\frac{1}{15}\)) do not match the correct simplification of the expression using the laws of exponents.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium