Pregunta
upstudy study bank question image url

3. REASON QUANTITATIVELY A rectangular box has dimensions of \( x \) inches, \( (x+5) \) inches, and \( (x-2) \) inches. If the volume of the box is \( 30 x \) cubic inches, explain how to find the dimensions of the box. Show your work. \[ (x+5)^{2}+(x-2)^{2}=30 x \]

Ask by Fuentes John. in Myanmar
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the dimensions of the box, set up the volume equation \( x \times (x + 5) \times (x - 2) = 30x \). Simplify to \( x^2 + 3x - 40 = 0 \), solve for \( x = 5 \) inches. The other dimensions are \( 10 \) inches and \( 3 \) inches.

Solución

To determine the dimensions of the rectangular box, we'll use the information provided: - **Dimensions of the box:** \( x \) inches, \( (x + 5) \) inches, and \( (x - 2) \) inches. - **Volume of the box:** \( 30x \) cubic inches. ### Step 1: Set Up the Volume Equation The volume \( V \) of a rectangular box is calculated by multiplying its length, width, and height. Given the dimensions, the volume can be expressed as: \[ V = x \times (x + 5) \times (x - 2) \] According to the problem, the volume is also equal to \( 30x \) cubic inches. Therefore, we can write the equation: \[ x \times (x + 5) \times (x - 2) = 30x \] ### Step 2: Simplify the Equation First, observe that both sides of the equation have a factor of \( x \). Assuming \( x \neq 0 \) (since a dimension of length 0 doesn't make physical sense), we can divide both sides by \( x \): \[ (x + 5)(x - 2) = 30 \] ### Step 3: Expand the Left Side Now, expand the left side of the equation using the distributive property (also known as the FOIL method for binomials): \[ (x + 5)(x - 2) = x \cdot x + x \cdot (-2) + 5 \cdot x + 5 \cdot (-2) \] \[ = x^2 - 2x + 5x - 10 \] \[ = x^2 + 3x - 10 \] So, the equation becomes: \[ x^2 + 3x - 10 = 30 \] ### Step 4: Form a Quadratic Equation Subtract \( 30 \) from both sides to set the equation to zero: \[ x^2 + 3x - 10 - 30 = 0 \] \[ x^2 + 3x - 40 = 0 \] ### Step 5: Solve the Quadratic Equation We can solve the quadratic equation \( x^2 + 3x - 40 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation, \( a = 1 \), \( b = 3 \), and \( c = -40 \). Plugging these values in: \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \times 1 \times (-40)}}{2 \times 1} \] \[ x = \frac{-3 \pm \sqrt{9 + 160}}{2} \] \[ x = \frac{-3 \pm \sqrt{169}}{2} \] \[ x = \frac{-3 \pm 13}{2} \] This gives us two potential solutions: 1. **Positive Solution:** \[ x = \frac{-3 + 13}{2} = \frac{10}{2} = 5 \] 2. **Negative Solution:** \[ x = \frac{-3 - 13}{2} = \frac{-16}{2} = -8 \] Since a physical dimension cannot be negative, we discard \( x = -8 \) and accept \( x = 5 \) inches. ### Step 6: Find the Other Dimensions Now that we've found \( x = 5 \) inches, we can find the other dimensions: 1. **Second Dimension:** \[ x + 5 = 5 + 5 = 10 \text{ inches} \] 2. **Third Dimension:** \[ x - 2 = 5 - 2 = 3 \text{ inches} \] ### Step 7: Verify the Volume To ensure our solution is correct, let's verify the volume with the found dimensions: \[ \text{Volume} = x \times (x + 5) \times (x - 2) = 5 \times 10 \times 3 = 150 \text{ cubic inches} \] According to the problem, the volume should be \( 30x = 30 \times 5 = 150 \) cubic inches. Both calculations agree, confirming that our solution is correct. ### **Final Dimensions of the Box:** - **Length:** \( 5 \) inches - **Width:** \( 10 \) inches - **Height:** \( 3 \) inches

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the dimensions of the box, we start by setting up the equation for the volume of a rectangular box, which is given by the product of its length, width, and height. Here, the dimensions are \( x \), \( (x + 5) \), and \( (x - 2) \). The volume can therefore be expressed as: \[ V = x \cdot (x + 5) \cdot (x - 2) \] Setting this equal to \( 30x \): \[ x \cdot (x + 5) \cdot (x - 2) = 30x \] Assuming \( x \neq 0 \), we can divide both sides by \( x \), simplifying to: \[ (x + 5)(x - 2) = 30 \] Expanding the left side: \[ x^2 + 5x - 2x - 10 = 30 \] This simplifies to: \[ x^2 + 3x - 10 = 30 \] Now, we move all terms to one side: \[ x^2 + 3x - 40 = 0 \] Next, we can factor this quadratic equation: \[ (x - 5)(x + 8) = 0 \] This gives us two potential solutions for \( x \): \( x = 5 \) and \( x = -8 \). Since a dimension cannot be negative, we take \( x = 5 \). Therefore, the dimensions of the box are: - Length: \( x = 5 \) inches - Width: \( x + 5 = 10 \) inches - Height: \( x - 2 = 3 \) inches The final dimensions of the box are \( 5 \) inches by \( 10 \) inches by \( 3 \) inches. Now, let’s confirm by substituting back: Volume \( = 5 \times 10 \times 3 = 150 \) cubic inches, and indeed \( 30 \times 5 = 150 \). The dimensions are spot on!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad