Pregunta
upstudy study bank question image url

2. A particle moves along the curve \[ \begin{array}{l}x=2 t^{2}, \quad y=t^{2}-4 t \quad \text { and } \quad z=3 t-5 \\ \text { where } t \text { is the time. Find the components of its velocity and acceleration at time } t=1 \text {, in the } \\ \text { direction } \hat{i}-3 \hat{j}+2 \hat{k} \text {. } \\ \text { (Nagpur, Summer 200l) Ans. } \frac{8 \sqrt{14}}{7},-\frac{\sqrt{14}}{7}\end{array} \]

Ask by Mckenzie Davison. in Nigeria
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

At time \( t = 1 \), the component of the velocity in the direction of \(\hat{i} - 3\hat{j} + 2\hat{k}\) is \(\frac{8\sqrt{14}}{7}\), and the component of the acceleration is \(-\frac{\sqrt{14}}{7}\).

Solución

To solve the problem of finding the components of the velocity and acceleration vectors in the direction of the vector \(\mathbf{d} = \hat{i} - 3\hat{j} + 2\hat{k}\) at time \(t = 1\), we'll follow these steps: 1. **Determine the Position Vector \(\mathbf{r}(t)\)** Given: \[ x = 2t^2, \quad y = t^2 - 4t, \quad z = 3t - 5 \] The position vector is: \[ \mathbf{r}(t) = 2t^2\, \hat{i} + (t^2 - 4t)\, \hat{j} + (3t - 5)\, \hat{k} \] 2. **Find the Velocity Vector \(\mathbf{v}(t)\)** The velocity vector is the first derivative of the position vector with respect to time \(t\): \[ \mathbf{v}(t) = \frac{d\mathbf{r}(t)}{dt} = 4t\, \hat{i} + (2t - 4)\, \hat{j} + 3\, \hat{k} \] At \(t = 1\): \[ \mathbf{v}(1) = 4(1)\, \hat{i} + (2(1) - 4)\, \hat{j} + 3\, \hat{k} = 4\, \hat{i} - 2\, \hat{j} + 3\, \hat{k} \] 3. **Find the Acceleration Vector \(\mathbf{a}(t)\)** The acceleration vector is the derivative of the velocity vector with respect to time \(t\): \[ \mathbf{a}(t) = \frac{d\mathbf{v}(t)}{dt} = 4\, \hat{i} + 2\, \hat{j} + 0\, \hat{k} \] At \(t = 1\): \[ \mathbf{a}(1) = 4\, \hat{i} + 2\, \hat{j} + 0\, \hat{k} \] 4. **Determine the Unit Vector in the Direction of \(\mathbf{d}\)** Given \(\mathbf{d} = \hat{i} - 3\hat{j} + 2\hat{k}\), the magnitude of \(\mathbf{d}\) is: \[ |\mathbf{d}| = \sqrt{1^2 + (-3)^2 + 2^2} = \sqrt{1 + 9 + 4} = \sqrt{14} \] Therefore, the unit vector \(\mathbf{\hat{d}}\) in the direction of \(\mathbf{d}\) is: \[ \mathbf{\hat{d}} = \frac{1}{\sqrt{14}}\, \hat{i} - \frac{3}{\sqrt{14}}\, \hat{j} + \frac{2}{\sqrt{14}}\, \hat{k} \] 5. **Compute the Components of Velocity and Acceleration in the Direction of \(\mathbf{d}\)** The component of a vector \(\mathbf{A}\) in the direction of \(\mathbf{\hat{d}}\) is given by the dot product: \[ \text{Component} = \mathbf{A} \cdot \mathbf{\hat{d}} \] - **Velocity Component:** \[ \mathbf{v}(1) \cdot \mathbf{\hat{d}} = (4)(1) + (-2)(-3) + (3)(2) = 4 + 6 + 6 = 16 \] \[ \text{Velocity Component} = \frac{16}{\sqrt{14}} = \frac{8\sqrt{14}}{7} \] - **Acceleration Component:** \[ \mathbf{a}(1) \cdot \mathbf{\hat{d}} = (4)(1) + (2)(-3) + (0)(2) = 4 - 6 + 0 = -2 \] \[ \text{Acceleration Component} = \frac{-2}{\sqrt{14}} = -\frac{\sqrt{14}}{7} \] **Final Answer:** - **Component of Velocity:** \(\dfrac{8\, \sqrt{14}}{7}\) - **Component of Acceleration:** \(-\dfrac{\sqrt{14}}{7}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the components of velocity and acceleration at time \( t = 1 \), we first differentiate the position functions. The velocity components are given by \[ \mathbf{v}(t) = \left( \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right) \] Taking derivatives, we have: - \( \frac{dx}{dt} = 4t \) - \( \frac{dy}{dt} = 2t - 4 \) - \( \frac{dz}{dt} = 3 \) At \( t = 1 \): - \( \mathbf{v}(1) = (4 \times 1, 2 \times 1 - 4, 3) = (4, -2, 3) \) Next, we find the acceleration by differentiating the velocity components: \[ \mathbf{a}(t) = \left( \frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}, \frac{d^2z}{dt^2} \right) \] Calculating the second derivatives: - \( \frac{d^2x}{dt^2} = 4 \) - \( \frac{d^2y}{dt^2} = 2 \) - \( \frac{d^2z}{dt^2} = 0 \) Thus: - \( \mathbf{a}(1) = (4, 2, 0) \) Now, to find the components along the direction \( \hat{i} - 3 \hat{j} + 2 \hat{k} \), we normalize this vector: \[ \text{Magnitude} = \sqrt{1^2 + (-3)^2 + 2^2} = \sqrt{1 + 9 + 4} = \sqrt{14} \] The unit vector \( \mathbf{u} \) is: \[ \mathbf{u} = \left(\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right) \] Finally, the components of velocity and acceleration in the given direction are: - Velocity: \[ \mathbf{v} \cdot \mathbf{u} = \frac{4 \cdot 1 - 2 \cdot 3 + 3 \cdot 2}{\sqrt{14}} = \frac{4 - 6 + 6}{\sqrt{14}} = \frac{4}{\sqrt{14}} \] - Acceleration: \[ \mathbf{a} \cdot \mathbf{u} = \frac{4 \cdot 1 - 2 \cdot 3 + 0 \cdot 2}{\sqrt{14}} = \frac{4 - 6}{\sqrt{14}} = \frac{-2}{\sqrt{14}} \] The components at \( t = 1 \) are therefore: \[ \boxed{\left( \frac{4}{\sqrt{14}}, \frac{-2}{\sqrt{14}} \right)} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad