Pregunta
upstudy study bank question image url

Sketch on the same set of axes the graphs of and
Clearly indicate all intercepts with the axes, turning point(s) and asymptote(s).

Ask by Harper Griffin. in South Africa
Jan 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To sketch the graphs of and on the same axes:
  1. Function :
    • Y-Intercept: (0, 6)
    • X-Intercepts: (-3, 0) and (1, 0)
    • Vertex (Turning Point): (-1, 8)
    • Direction: Opens downward
  2. Function :
    • Y-Intercept: (0, -2)
    • No X-Intercept
    • Horizontal Asymptote:
    • Behavior: Decreases as increases, approaching as decreases
Key Points to Plot:
  • For : Plot the vertex at (-1,8), intercepts at (-3,0) and (1,0), and the y-intercept at (0,6).
  • For : Plot the y-intercept at (0,-2) and additional points like (-2, -0.5), (-1, -1), (1, -4), etc.
Intersection Points: Solve to find where the graphs intersect. This may require numerical methods for exact solutions.
Asymptotes and Behavior:
  • is a downward-opening parabola with a maximum point at the vertex.
  • is an exponential decay function approaching the horizontal asymptote as increases.
Use graphing tools for a precise visualization of these features.

Solución

Sure! Let’s analyze and sketch the graphs of the two functions and on the same set of axes. We’ll identify their intercepts, turning points, and asymptotes.

1. Function

Type of Function

  • Quadratic Function: Represents a parabola.
  • Direction: Opens downward since the coefficient of is negative.

Key Features

a. Y-Intercept

  • Set :
  • Y-Intercept:

b. X-Intercepts (Roots)

  • Solve :
  • Using the quadratic formula:
  • X-Intercepts: and

c. Vertex (Turning Point)

  • Formula for vertex -coordinate:
  • Calculate :
  • Vertex:

Summary for :

  • Y-Intercept:
  • X-Intercepts: and
  • Vertex:
  • Direction: Opens downward

2. Function

Type of Function

  • Exponential Function: Represents exponential decay (scaled by a factor of -2).

Key Features

a. Y-Intercept

  • Set :
  • Y-Intercept:

b. X-Intercept

  • Set :
  • No X-Intercept: is always positive, so never crosses the x-axis.

c. Asymptote

  • Horizontal Asymptote: (since as , , so )

d. Additional Points for Sketching

-2
-1
1
2

Summary for :

  • Y-Intercept:
  • No X-Intercept
  • Horizontal Asymptote:
  • Behavior:
    • As : (approaches asymptote from below)
    • As :

3. Combined Sketch

Below is a conceptual sketch of both functions on the same axes. Due to text limitations, this is a simplified representation.
Y
|
10|             *
  |             *
  |             *
  |             *       f(x) = -2x² -4x +6
8 |             *       (Vertex at (-1,8))
  |             *
6 |*            * 
  | \           *
4 |  \          *
  |   \         *
2 |    \        *
  |     \       *
0 |-----*-------*----------- X
    -3   -1    0    1    2   
        f(x): (-3,0),(1,0); (0,6)
        
Additional Exponential Function g(x):
- Starts near y=0 for large negative x
- Passes through (0,-2), (-1,-1), (1,-4), etc.
- Approaches y=0 as x decreases

For clarity, here's a more detailed description:

- **Parabola \( f(x) \)**:
  - **Vertex** at (-1, 8)
  - **X-intercepts** at (-3, 0) and (1, 0)
  - **Y-intercept** at (0, 6)
  - Opens downward

- **Exponential Curve \( g(x) \)**:
  - **Y-intercept** at (0, -2)
  - **No X-intercept**
  - **Horizontal Asymptote** at y = 0
  - Passes through points like (-2, -0.5), (-1, -1), (1, -4), (2, -8)

## 4. Description of Graph Behavior

- **Intersection Points**:
  - Check if the graphs intersect by solving \( f(x) = g(x) \):
    \[
    -2x^{2} -4x +6 = -2 \cdot 2^{x}
    \]
    This equation is transcendental and cannot be solved algebraically. Graphically, they may intersect at certain points, but exact solutions require numerical methods.

- **Overall Layout**:
  - The parabola \( f(x) \) peaks at (-1,8) and descends on both sides, crossing the y-axis at (0,6) and the x-axis at (-3,0) and (1,0).
  - The exponential function \( g(x) \) decreases rapidly as \( x \) increases, passing through (0,-2) and moving towards negative infinity, while approaching the horizontal asymptote y = 0 as \( x \) decreases.

## 5. Visual Representation

While I can't provide a graphical plot directly, here's a rough ASCII representation to help visualize the relative positions of the two functions:

Y
|
10|
|
|
|
8 | * (Vertex f)
|
6 |* (0,6)
|
4 |
|
2 |
|
0 |----------------------------- X
-3 -1 0 1 2
(x-intercepts f)
Additional Points for g(x):
  • At x=0: (0,-2)
  • At x=1: (1,-4)
  • At x=-1: (-1,-1)
  • As x approaches -∞: approaches y=0

**Legend:**
- `*` represents key points on \( f(x) \)
- The exponential curve \( g(x) \) would descend from near y=0 (left side), pass through (0,-2), (-1,-1), (1,-4), etc., moving downward as x increases.

For a precise and accurate graph, consider using graphing software or tools like Desmos, GeoGebra, or a graphing calculator. These tools will allow you to input both functions and visualize their intersections, intercepts, and overall behavior clearly.

## 6. Summary of Features

| Feature           | \( f(x) = -2x^{2} -4x +6 \)           | \( g(x) = -2 \cdot 2^{x} \)    |
|-------------------|--------------------------------------|--------------------------------|
| **Type**          | Quadratic (Parabola)                 | Exponential                    |
| **Y-Intercept**   | (0, 6)                               | (0, -2)                         |
| **X-Intercepts**  | (-3, 0) and (1, 0)                   | None                           |
| **Vertex**        | (-1, 8)                              | N/A                            |
| **Asymptote**     | None                                 | Horizontal asymptote at y = 0   |
| **Direction**     | Opens downward                       | Decreasing (approaches -∞)      |

Feel free to use graphing tools to get a precise visualization based on these key points and descriptions!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To sketch the graphs of and , start by determining their key characteristics.
For , it’s a downward-opening parabola. To find the intercepts, set to calculate the y-intercept, giving . For the x-intercepts, we can set and solve the quadratic using the quadratic formula, yielding two roots. The vertex (turning point) can be found using , where and , leading to the vertex at .
For , observe that it is an exponential decay function. The y-intercept occurs at , giving . As approaches infinity, approaches (asymptote at ).
When both plots are sketched, will approximately intersect the y-axis at 6 and have the vertex at (-1, 8), while starts at (-2) and drops off toward its horizontal asymptote.
Now, grab your favorite colored pencils, and let’s bring these graphs to life on the same set of axes! Remember to clearly mark the key points and features for clarity.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad