Pregunta
upstudy study bank question image url

4) Solve the inequality. Then explain how the solution to an inequality is different than an equation. \( 10-2(3 x+4)<11 \)

Ask by Powers Marsh. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To solve the inequality \(10 - 2(3x + 4) < 11\), follow these steps: 1. Expand the expression: \[ 10 - 6x - 8 < 11 \] 2. Combine like terms: \[ 2 - 6x < 11 \] 3. Isolate the variable: \[ -6x < 9 \] 4. Solve for \(x\): \[ x > -\frac{3}{2} \] **Difference Between Inequalities and Equations:** - **Equations** have specific solutions, while **inequalities** have a range of solutions. - **Graphically**, equations are single points, and inequalities are intervals on the number line. - **Process**, inequalities require reversing the sign when multiplying or dividing by a negative number. - **Applications**, equations find exact values, and inequalities describe possible ranges. So, the solution to the inequality is any real number greater than \(-\frac{3}{2}\).

Solución

To solve the inequality and understand how its solution differs from that of an equation, let's proceed step-by-step. ### **Solving the Inequality** Given the inequality: \[ 10 - 2(3x + 4) < 11 \] 1. **Expand the Expression:** \[ 10 - 2 \cdot 3x - 2 \cdot 4 < 11 \] \[ 10 - 6x - 8 < 11 \] 2. **Combine Like Terms:** \[ (10 - 8) - 6x < 11 \] \[ 2 - 6x < 11 \] 3. **Isolate the Variable Term:** Subtract 2 from both sides: \[ 2 - 6x - 2 < 11 - 2 \] \[ -6x < 9 \] 4. **Solve for \( x \):** Divide both sides by -6. **Remember:** When you multiply or divide both sides of an inequality by a negative number, you must reverse the inequality sign. \[ \frac{-6x}{-6} > \frac{9}{-6} \] \[ x > -\frac{3}{2} \] ### **Solution** \[ x > -\frac{3}{2} \] This means that any real number greater than \(-\frac{3}{2}\) satisfies the inequality. ### **Difference Between Solutions to Inequalities and Equations** 1. **Nature of Solutions:** - **Equations:** Typically have specific solutions. For example, \(2x + 3 = 7\) has the unique solution \(x = 2\). - **Inequalities:** Represent a range or interval of solutions. In our case, \(x > -\frac{3}{2}\) includes infinitely many values greater than \(-\frac{3}{2}\). 2. **Graphical Representation:** - **Equations:** Solutions are points on a number line. - **Inequalities:** Solutions are intervals on a number line, often represented with open or closed circles and arrows indicating the direction of the inequality. 3. **Solution Process:** - **Equations:** Operations performed are the same on both sides without changing the direction of equality. - **Inequalities:** Special rules apply, such as reversing the inequality sign when multiplying or dividing by a negative number. 4. **Applications:** - **Equations:** Used to find exact values, such as determining when two expressions are equal. - **Inequalities:** Used to describe scenarios with constraints, such as determining the range of possible values that satisfy certain conditions. **In summary**, while equations seek specific values that make both sides equal, inequalities describe a set of possible values that satisfy a particular condition or range.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the inequality \( 10 - 2(3x + 4) < 11 \), first distribute the -2: \[ 10 - 6x - 8 < 11 \] This simplifies to: \[ 2 - 6x < 11 \] Next, subtract 2 from both sides: \[ -6x < 9 \] Now, divide both sides by -6, remembering to flip the inequality sign: \[ x > -\frac{3}{2} \] Now, let's talk about how the solution to an inequality differs from that of an equation. When you solve an equation, you find a specific value or set of values that make the equation true, like finding x = 2. With inequalities, you’re looking for a range of values that satisfy the inequality, which can be broader. For example, in this case, any x greater than -1.5 will make the inequality true, giving a whole set of solutions rather than just a single point!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad