Pregunta
upstudy study bank question image url

\( 1<\quad \) (a) Graph the following quadratic function on \( [-10,10] \) by \( [-10,10] \) \( g(x)=-5 x^{2}-2 x+8 \) (b) Does this window give a corplete graph?

Ask by Guzman Salinas. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph of \( g(x) = -5x^{2} - 2x + 8 \) within the window \([-10, 10] \times [-10, 10]\) shows the vertex at \( (0.2, 7.4) \), y-intercept at \( (0, 8) \), and x-intercepts at approximately \( (-1.48, 0) \) and \( (1.08, 0) \). However, the graph is **not complete** because parts of the parabola extend beyond the y-window and are not visible.

Solución

Sure, let's tackle both parts of your question step by step. --- ### **(a) Graphing the Quadratic Function \( g(x) = -5x^{2} - 2x + 8 \) on the Window \([-10, 10] \times [-10, 10]\)** Since I can't provide a visual graph here, I'll describe how the graph of the quadratic function \( g(x) = -5x^{2} - 2x + 8 \) would appear within the specified window. #### **Key Characteristics of the Function:** 1. **Direction of Opening:** - The coefficient of \( x^{2} \) is **-5**, which is negative. This means the parabola opens **downwards**. 2. **Vertex (Maximum Point):** - The vertex form of a parabola \( ax^{2} + bx + c \) is found using: \[ x_v = -\frac{b}{2a} \] \[ y_v = g(x_v) \] - Calculating \( x_v \): \[ x_v = -\frac{-2}{2 \times -5} = -\frac{2}{-10} = 0.2 \] - Calculating \( y_v \): \[ g(0.2) = -5(0.2)^2 - 2(0.2) + 8 = -5(0.04) - 0.4 + 8 = -0.2 - 0.4 + 8 = 7.4 \] - **Vertex:** \( (0.2, 7.4) \) 3. **Y-Intercept:** - Set \( x = 0 \): \[ g(0) = -5(0)^2 - 2(0) + 8 = 8 \] - **Y-Intercept:** \( (0, 8) \) 4. **X-Intercepts (Roots):** - Solve \( -5x^{2} - 2x + 8 = 0 \): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{4 - 4(-5)(8)}}{2(-5)} = \frac{2 \pm \sqrt{4 + 160}}{-10} = \frac{2 \pm \sqrt{164}}{-10} \] \[ \sqrt{164} \approx 12.81 \] \[ x \approx \frac{2 \pm 12.81}{-10} \] \[ x \approx \frac{2 + 12.81}{-10} \approx -1.48 \quad \text{and} \quad x \approx \frac{2 - 12.81}{-10} \approx 1.08 \] - **X-Intercepts:** Approximately \( (-1.48, 0) \) and \( (1.08, 0) \) 5. **Behavior at Window Boundaries:** - **At \( x = 10 \):** \[ g(10) = -5(100) - 2(10) + 8 = -500 - 20 + 8 = -512 \] - Within the y-window \([-10, 10]\), \( y = -512 \) is **not visible**. - **At \( x = -10 \):** \[ g(-10) = -5(100) - 2(-10) + 8 = -500 + 20 + 8 = -472 \] - Similarly, \( y = -472 \) is **not visible** within the y-window. #### **Graph Description within \([-10, 10] \times [-10, 10]\):** - **Visible Portion:** - The vertex at \( (0.2, 7.4) \) lies within the window. - The y-intercept at \( (0, 8) \) is visible. - The x-intercepts at approximately \( (-1.48, 0) \) and \( (1.08, 0) \) are within the window. - The parabola will rise to the vertex and then descend, crossing the x-axis at the intercepts. - **Not Visible Portion:** - As \( x \) approaches \( \pm10 \), the function values drop far below the y-window limit of -10, so these parts of the parabola are **not visible**. --- ### **(b) Completeness of the Graph Within the Given Window** **Understanding "Complete Graph":** Assuming "complete graph" refers to the graph of the function being fully depicted within the specified window, we can analyze the completeness based on the window's ability to capture all significant aspects of the graph. #### **Analysis:** 1. **Vertical Extent (\( y \)-values):** - The function has a **maximum** value at the vertex \( y = 7.4 \). - As \( |x| \) increases beyond the vertex, \( y \) decreases without bound (approaches negative infinity). - However, the y-window is restricted to \([-10, 10]\), so any \( y \)-values below -10 are **not displayed**. 2. **Horizontal Extent (\( x \)-values):** - The window spans from \( x = -10 \) to \( x = 10 \). - The significant features (vertex, intercepts) lie well within this range. 3. **Overall Completeness:** - **Visible Features:** - Vertex at \( (0.2, 7.4) \) - Y-intercept at \( (0, 8) \) - X-intercepts at approximately \( (-1.48, 0) \) and \( (1.08, 0) \) - **Missing Features:** - The tails of the parabola extend beyond \( y = -10 \), which are not visible in the window. - Therefore, while all critical points within the window are displayed, the graph is **not fully complete** because portions of the parabola are cut off. #### **Conclusion:** **No, the window \([-10, 10] \times [-10, 10]\) does **not** provide a complete graph of the function \( g(x) = -5x^{2} - 2x + 8 \)**. While it captures all the essential features like the vertex and intercepts, the ends of the parabola extend beyond the y-limits of the window and thus are not displayed. --- If you need a visual representation, consider using graphing tools like [Desmos](https://www.desmos.com/calculator) or [GeoGebra](https://www.geogebra.org/graphing) to plot the function within the specified window.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To graph the function \( g(x) = -5x^2 - 2x + 8 \) over the interval \([-10, 10]\) for both the x and y axes, you'll see a downward-opening parabola with its vertex located at the point \((- \frac{b}{2a}, g(- \frac{b}{2a}))\). In this case, the vertex is at \(x = -\frac{-2}{2 \cdot -5} = -\frac{1}{5}\), which gives \(g(-\frac{1}{5}) = 8.4\). While -10 to 10 in the x-direction allows you to see the broad shape of the parabola, it might clip the full reach of the function since the parabola stretches infinitely downwards. A wider y-range might be necessary to capture the complete effect of the negative leading coefficient. With this setup, plotting the key features—like the vertex and zeros (found using the quadratic formula)—will enhance accuracy. The zero crossings are at \(g(x) = 0\), so solving \(-5x^2 - 2x + 8 = 0\) will reveal any intersections with the x-axis and validate the graph's completeness.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad