Pregunta
upstudy study bank question image url

\( \left. \begin{array} { r l } { 3 } & { A } \\ { C } & { = \sec A + \tan A , a = \sec A - \tan A , } \\ { C } & { = \frac { \operatorname { cosec } A + 1 } { \operatorname { cosec } A - 1 } } \end{array} \right. \)

Ask by Hanson Jimenez. in Bangladesh
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system of equations has infinitely many solutions, meaning there are multiple values of \( A \) that satisfy the given relationships.

Solución

To solve the given system of equations, we have: 1. \( C = \sec A + \tan A \) 2. \( a = \sec A - \tan A \) 3. \( C = \frac{\csc A + 1}{\csc A - 1} \) We will solve these equations step by step. ### Step 1: Express \( C \) in terms of \( A \) From the first equation, we have: \[ C = \sec A + \tan A \] ### Step 2: Express \( a \) in terms of \( A \) From the second equation, we have: \[ a = \sec A - \tan A \] ### Step 3: Relate \( C \) and \( a \) Now, we can express \( C \) and \( a \) in terms of \( \sec A \) and \( \tan A \): - Adding the two equations: \[ C + a = (\sec A + \tan A) + (\sec A - \tan A) = 2\sec A \] - Subtracting the second equation from the first: \[ C - a = (\sec A + \tan A) - (\sec A - \tan A) = 2\tan A \] ### Step 4: Solve for \( \sec A \) and \( \tan A \) From the equations \( C + a = 2\sec A \) and \( C - a = 2\tan A \), we can express \( \sec A \) and \( \tan A \) as: \[ \sec A = \frac{C + a}{2} \] \[ \tan A = \frac{C - a}{2} \] ### Step 5: Substitute into the third equation Now we substitute \( C \) into the third equation: \[ C = \frac{\csc A + 1}{\csc A - 1} \] ### Step 6: Express \( \csc A \) in terms of \( C \) We can rearrange the third equation to express \( \csc A \): \[ C(\csc A - 1) = \csc A + 1 \] \[ C\csc A - C = \csc A + 1 \] \[ C\csc A - \csc A = C + 1 \] \[ \csc A(C - 1) = C + 1 \] \[ \csc A = \frac{C + 1}{C - 1} \] ### Step 7: Solve the system of equations Now we have: 1. \( C = \sec A + \tan A \) 2. \( a = \sec A - \tan A \) 3. \( \csc A = \frac{C + 1}{C - 1} \) We can now solve the system of equations. Let's proceed to solve these equations together. I'll use the tool to solve the system of equations. Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}C=\frac{C+1}{C-1}+\frac{C-a}{2}\\a=\frac{C+a}{2}-\frac{C-a}{2}\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}C=\frac{C+1}{C-1}+\frac{C-a}{2}\\2a=2a\end{array}\right.\) - step2: Solve the equation: \(a=\frac{C^{2}-3C-2}{-C+1}\) - step3: Calculate: \(\left(C,a\right) = \left(C,\frac{C^{2}-3C-2}{-C+1}\right),C \in \mathbb{R}\) - step4: Alternative Form: \(\textrm{Infinitely many solutions}\) The system of equations has infinitely many solutions. This indicates that the equations are dependent, meaning they describe the same relationship in different forms. ### Summary of Findings: 1. We derived expressions for \( C \) and \( a \) in terms of \( \sec A \) and \( \tan A \). 2. We also expressed \( \csc A \) in terms of \( C \). 3. The relationships among these variables lead to a consistent set of equations that do not yield a unique solution but rather a family of solutions. If you have specific values for \( a \) or \( C \), we can further explore particular solutions. Otherwise, the relationships established can be used to find values of \( A \) that satisfy the equations for any chosen \( C \) or \( a \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that the relationship between secant and tangent is deeply rooted in the properties of right triangles? Understanding these trigonometric identities can give you insights into the unit circle as well. For any angle \(A\), the secant function represents the ratio of the hypotenuse to the adjacent side in a right triangle, while the tangent represents the ratio of the opposite side to the adjacent side. This relationship not only helps in solving right triangle problems but also enhances your understanding of wave functions in physics! When it comes to solving equations involving secant and tangent, a common mistake is forgetting the domain restrictions. Both \( \sec A \) and \( \tan A \) are undefined for angles where the adjacent side (in the case of secant) or the adjacent side equals zero (for tangent), which means you'll run into issues at odd multiples of \( \frac{\pi}{2} \). Always double-check your answers by ensuring they fit within the valid range of the functions involved.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad