Pregunta
Simplify the following number by using the imaginary number \( i \). \[ \sqrt{-150} \]
Ask by Logan Campbell. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified form is \( 5\sqrt{6}i \).
Solución
Calculate or simplify the expression \( \sqrt(-150) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{-150}\)
- step1: Evaluate the power:
\(\sqrt{150}\times \sqrt{-1}\)
- step2: Evaluate the power:
\(\sqrt{150}\times i\)
- step3: Evaluate the power:
\(5\sqrt{6}\times i\)
The simplified form of \( \sqrt{-150} \) using imaginary numbers is \( 5\sqrt{6}i \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To simplify \( \sqrt{-150} \), we can start by expressing the negative number using the imaginary unit \( i \). We know that \( \sqrt{-1} = i \). Thus, \[ \sqrt{-150} = \sqrt{150} \cdot \sqrt{-1} = \sqrt{150} i \] Next, we can simplify \( \sqrt{150} \). The number 150 can be factored into \( 25 \times 6 \), where 25 is a perfect square: \[ \sqrt{150} = \sqrt{25 \times 6} = \sqrt{25} \cdot \sqrt{6} = 5\sqrt{6} \] Putting it all together, we have: \[ \sqrt{-150} = 5\sqrt{6} i \] So, the simplified form of \( \sqrt{-150} \) is \( 5\sqrt{6} i \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium