Pregunta
upstudy study bank question image url

10 Multiple Choice 1 point hboard An investor deposited \( \$ 6,100 \) in an investment account. - The account pays \( 3.1 \% \) interest compounded annually. - The investor leaves the money in the account for 2 years. - The investor make no additional deposits or withdrawals. What is the balance in the account at the end of 2 years? \$6,686.21 \( \$ 6,478.20 \) \$6,484.06 History 5 \( \$ 6,289.10 \) 88 6 Mastery 7 Clear my selection Help Previous

Ask by Byrd Chandler. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The balance in the account at the end of 2 years is approximately \$6,478.20.

Solución

To find the balance in the investment account at the end of 2 years with an initial deposit of \( P = 6100 \) and an annual interest rate of \( r = 3.1\% \) compounded annually, we can use the formula for compound interest: \[ A = P(1 + r)^t \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial deposit). - \( r \) is the annual interest rate (decimal). - \( t \) is the number of years the money is invested or borrowed. ### Step 1: Convert the interest rate from percentage to decimal \[ r = \frac{3.1}{100} = 0.031 \] ### Step 2: Substitute the known values into the formula \[ A = 6100(1 + 0.031)^2 \] ### Step 3: Calculate \( (1 + r) \) \[ 1 + r = 1 + 0.031 = 1.031 \] ### Step 4: Calculate \( (1.031)^2 \) \[ (1.031)^2 = 1.062061 \] ### Step 5: Calculate the final amount \( A \) \[ A = 6100 \times 1.062061 \] Now, let's perform the calculation for \( A \). Calculate the value by following steps: - step0: Calculate: \(6100\times 1.062061\) - step1: Multiply the numbers: \(6478.5721\) The calculation gives us: \[ A \approx 6478.5721 \] ### Final Step: Round to two decimal places The balance in the account at the end of 2 years is approximately \( \$ 6,478.57 \). ### Conclusion Among the provided options, the closest match is: \(\$ 6,478.20\) Thus, the correct answer is \( \$ 6,478.20 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the balance in the investment account at the end of 2 years with compounded interest, you can use the formula: \[ A = P(1 + r)^n \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial deposit or investment). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of years the money is invested or borrowed for. Plug in the values: - \( P = 6,100 \) - \( r = 0.031 \) - \( n = 2 \) \[ A = 6100(1 + 0.031)^2 \] \[ A = 6100(1.031)^2 \] \[ A = 6100(1.062561) \] \[ A ≈ 6,484.06 \] So, the balance in the account at the end of 2 years would be approximately \( \$6,484.06 \). The world of investing owes much to historical figures like Benjamin Graham, who is often called the "father of value investing." His principles encourage understanding the true value of an investment rather than chasing trends. By emphasizing fundamental analysis, Graham promoted smart investing long before term sheets became commonplace in wealth management. In real-world application, knowing how to calculate compound interest empowers individuals to make informed decisions about savings and investment. Many people overlook the power of compounding; even modestly higher interest rates can result in significantly greater returns over time, turning that initial investment into a robust financial future!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad