25. Find the equation of the line tangent to circle \( S \) centered at \( (1,1) \) if the point of tangency is \( (5,4) \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the equation of the line tangent to the circle centered at \( (1,1) \) with a point of tangency at \( (5,4) \), we'll start by determining the slope of the radius from the center to the point of tangency. The slope is given by: \[ m = \frac{4 - 1}{5 - 1} = \frac{3}{4} \] The tangent line is perpendicular to the radius, meaning its slope will be the negative reciprocal: \[ m_{\text{tangent}} = -\frac{4}{3} \] Now, using the point-slope form of the equation of a line, we have: \[ y - y_1 = m(x - x_1) \] Substituting \( (x_1, y_1) = (5,4) \) and \( m = -\frac{4}{3} \): \[ y - 4 = -\frac{4}{3}(x - 5) \] Now, simplify the equation: \[ y - 4 = -\frac{4}{3}x + \frac{20}{3} \] \[ y = -\frac{4}{3}x + \frac{20}{3} + 4 \] \[ y = -\frac{4}{3}x + \frac{20}{3} + \frac{12}{3} \] \[ y = -\frac{4}{3}x + \frac{32}{3} \] Thus, the equation of the tangent line is: \[ y = -\frac{4}{3}x + \frac{32}{3} \]