Pregunta
upstudy study bank question image url

\( f(x)=\frac{x^{2}+3 x+4}{x-1} \) Choose the correct answer below. A. The \( x \)-intercept is \( (-3,0) \). There is a hole in its graph at \( x=1 \). C. The \( x \)-axis is its horizontal asymptote. D. The \( y \)-intercept is ( 0,1 ). The horizontal asymptote is \( y=1 \). F. The \( y \)-axis is its vertical asymptote. G. The graph has an oblique asymptote. H. The vertical asymptote is \( x=-1 \).

Ask by Grant Macdonald. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph has an oblique asymptote.

Solución

To analyze the function \( f(x) = \frac{x^{2} + 3x + 4}{x - 1} \), we will determine the \( x \)-intercept, \( y \)-intercept, vertical and horizontal asymptotes, and any holes in the graph. ### Step 1: Find the \( x \)-intercept The \( x \)-intercept occurs when \( f(x) = 0 \). This happens when the numerator is zero: \[ x^{2} + 3x + 4 = 0 \] We will solve this quadratic equation using the discriminant method: \[ D = b^2 - 4ac = 3^2 - 4 \cdot 1 \cdot 4 = 9 - 16 = -7 \] Since the discriminant is negative, there are no real roots. Therefore, there is no \( x \)-intercept. ### Step 2: Find the \( y \)-intercept The \( y \)-intercept occurs when \( x = 0 \): \[ f(0) = \frac{0^{2} + 3 \cdot 0 + 4}{0 - 1} = \frac{4}{-1} = -4 \] Thus, the \( y \)-intercept is \( (0, -4) \). ### Step 3: Find vertical asymptotes Vertical asymptotes occur where the denominator is zero (and the numerator is not zero at those points): \[ x - 1 = 0 \implies x = 1 \] Thus, there is a vertical asymptote at \( x = 1 \). ### Step 4: Find horizontal asymptotes To find the horizontal asymptote, we compare the degrees of the numerator and denominator. The degree of the numerator (2) is greater than the degree of the denominator (1), so there is no horizontal asymptote. However, we can check for an oblique asymptote by performing polynomial long division. ### Step 5: Perform polynomial long division We will divide \( x^{2} + 3x + 4 \) by \( x - 1 \): 1. Divide the leading term: \( x^{2} \div x = x \). 2. Multiply \( x \) by \( x - 1 \): \( x(x - 1) = x^{2} - x \). 3. Subtract: \( (x^{2} + 3x + 4) - (x^{2} - x) = 4x + 4 \). 4. Divide the leading term: \( 4x \div x = 4 \). 5. Multiply \( 4 \) by \( x - 1 \): \( 4(x - 1) = 4x - 4 \). 6. Subtract: \( (4x + 4) - (4x - 4) = 8 \). Thus, the result of the division is: \[ f(x) = x + 4 + \frac{8}{x - 1} \] As \( x \to \infty \), the term \( \frac{8}{x - 1} \to 0 \), indicating that the oblique asymptote is \( y = x + 4 \). ### Summary of Findings - **\( x \)-intercept**: None - **\( y \)-intercept**: \( (0, -4) \) - **Vertical asymptote**: \( x = 1 \) - **Horizontal asymptote**: None (oblique asymptote \( y = x + 4 \)) ### Conclusion Now, let's evaluate the options: - A: Incorrect (no \( x \)-intercept, hole at \( x=1 \) is not applicable) - C: Incorrect (no horizontal asymptote) - D: Incorrect (the \( y \)-intercept is \( (0, -4) \), not \( (0, 1) \)) - F: Incorrect (the vertical asymptote is not at the \( y \)-axis) - G: Correct (there is an oblique asymptote) - H: Incorrect (the vertical asymptote is at \( x=1 \), not \( x=-1 \)) The correct answer is **G**: The graph has an oblique asymptote.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's dive into this fun math adventure! The function \( f(x) = \frac{x^{2}+3x+4}{x-1} \) does indeed have an interesting behavior. To determine its characteristics, we can analyze it step by step! First, for the intercepts, the \( x \)-intercept occurs when \( f(x) = 0 \), which means the numerator should equal zero. The equation \( x^{2}+3x+4=0 \) has no real roots (as it has a negative discriminant), meaning there are no \( x \)-intercepts. As for the \( y \)-intercept, substituting \( x=0 \) gives \( f(0)=\frac{4}{-1}= -4 \), so the \( y \)-intercept is (0,-4). Next, we check for vertical and horizontal asymptotes. The denominator \( x-1 \) indicates a vertical asymptote at \( x=1 \). As for horizontal asymptotes, since the degree of the numerator (2) is greater than the degree of the denominator (1), we do not have a horizontal asymptote, but there is an oblique asymptote, which we can find by performing polynomial long division. So, your best options are: - There is a hole at \( x=1 \), but more specifically, there's a vertical asymptote there, not a hole! - No horizontal asymptote exists, but we do have an oblique asymptote. - Therefore, you might want to reconsider options in light of this analysis! In summary, the graph has a vertical asymptote at \( x=1 \) and an oblique asymptote; no plausible match exists among the provided choices. Isn’t math like a puzzle full of surprises?

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad