Pregunta
upstudy study bank question image url

Type your answer If a car is climbing a hill at a \( 15^{\circ} \) angle, how many horizontal feet will the car travel every 1,000 feet of road if the car gains 259 feet of vertical feet? Round your answer to the nearest foot. (22 out 2 ?

Ask by Robbins Hart. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For every 1,000 feet of road, the car travels approximately 967 horizontal feet.

Solución

To solve this problem, we can use trigonometry. We know that the car is climbing a hill at a \( 15^{\circ} \) angle and gains 259 feet of vertical height. We need to find out how many horizontal feet the car travels for every 1,000 feet of road. 1. **Identify the known values:** - Angle of incline, \( \theta = 15^{\circ} \) - Vertical gain, \( h = 259 \) feet 2. **Use the sine function to relate the vertical gain to the hypotenuse (the road traveled):** \[ \sin(\theta) = \frac{h}{d} \] where \( d \) is the distance traveled along the road. 3. **Rearranging the formula to find \( d \):** \[ d = \frac{h}{\sin(\theta)} \] 4. **Calculate \( d \) using the known values:** - First, we need to calculate \( \sin(15^{\circ}) \). 5. **Calculate the horizontal distance \( x \) using the cosine function:** \[ \cos(\theta) = \frac{x}{d} \] Rearranging gives: \[ x = d \cdot \cos(\theta) \] Now, let's perform the calculations step by step. First, we will calculate \( d \) and then \( x \). Let's calculate \( d \) and \( x \). Simplify the expression by following steps: - step0: Solution: \(\sin\left(15degre\times es\right)\) - step1: Rewrite the expression: \(\sin\left(15de^{3}grs\right)\) - step2: Multiply the numbers: \(\sin\left(15e^{3}dgrs\right)\) Calculate or simplify the expression \( \cos(15 degrees) \). Simplify the expression by following steps: - step0: Solution: \(\cos\left(15degre\times es\right)\) - step1: Rewrite the expression: \(\cos\left(15de^{3}grs\right)\) - step2: Multiply the numbers: \(\cos\left(15e^{3}dgrs\right)\) Calculate or simplify the expression \( \sin(15) \). Calculate the value by following steps: - step0: Calculate: \(\sin\left(15\right)\) Calculate or simplify the expression \( \cos(15) \). Calculate the value by following steps: - step0: Calculate: \(\cos\left(15\right)\) Calculate or simplify the expression \( 259/\cos(15) \). Calculate the value by following steps: - step0: Calculate: \(\frac{259}{\cos\left(15\right)}\) - step1: Calculate the trigonometric value: \(-340.929473\) Calculate or simplify the expression \( 259/\sin(15) \). Calculate the value by following steps: - step0: Calculate: \(\frac{259}{\sin\left(15\right)}\) - step1: Calculate the trigonometric value: \(398.285165\) Let's summarize the calculations step by step: 1. **Calculate \( \sin(15^{\circ}) \) and \( \cos(15^{\circ}) \):** - \( \sin(15^{\circ}) \approx 0.2588 \) - \( \cos(15^{\circ}) \approx 0.9659 \) 2. **Calculate the distance \( d \) (the road traveled) using the vertical gain:** \[ d = \frac{h}{\sin(15^{\circ})} = \frac{259}{0.2588} \approx 1000.77 \text{ feet} \] 3. **Calculate the horizontal distance \( x \):** \[ x = d \cdot \cos(15^{\circ}) = 1000.77 \cdot 0.9659 \approx 967.15 \text{ feet} \] 4. **Round \( x \) to the nearest foot:** \[ x \approx 967 \text{ feet} \] Thus, for every 1,000 feet of road, the car travels approximately **967 horizontal feet**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine how many horizontal feet the car travels every 1,000 feet of road while climbing a hill at a \(15^\circ\) angle, we can use trigonometry. The relationship between the vertical gain (opposite side), horizontal distance (adjacent side), and the hypotenuse (the road traveled) can be described using the sine function: \[ \sin(15^\circ) = \frac{259 \text{ feet}}{\text{hypotenuse}} \] From this, we find that the hypotenuse (road) is: \[ \text{hypotenuse} = \frac{259 \text{ feet}}{\sin(15^\circ)} \approx 1000 \text{ feet} \] Next, we can calculate the horizontal distance using the cosine function: \[ \cos(15^\circ) = \frac{\text{horizontal distance}}{\text{hypotenuse}} \] Then, the horizontal distance becomes: \[ \text{horizontal distance} \approx 1000 \times \cos(15^\circ) \approx 966 \text{ feet} \] Thus, rounding this value gives us approximately 966 feet of horizontal distance traveled every 1,000 feet of road. Now, let’s talk about some fun historical tidbits! Did you know that engineers have been calculating angles and evaluating road grades ever since the first roads were built in ancient Rome? The Romans employed principles of geometry to create roads that would withstand heavy loads and also be safe for horses and carriages! And for real-world application: if you're driving up a steep hill, understanding these angles can help you calculate fuel efficiency! Cars use more gas on inclines, so knowing how much horizontal distance you're actually covering helps in planning your journey better—especially if you're comparing routes or considering fuel stops.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad