Pregunta
upstudy study bank question image url

Suppose the profit from the sale of \( x \) units of a product is \( P=6400 x_{2}-18 x^{2}-400 \). (a) What level(s) of production will yield a profit of \( \$ 318,800 \) ? (Enter your answers as a comma-separated list. Round your answers to two decimal places.) (b) Can a profit of more than \( \$ 318,800 \) be made? (Yes No

Ask by Reed Reeves. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(a)** 60.00, 295.56 **(b)** Yes

Solución

Let's analyze the given profit function: \[ P = 6400x - 18x^2 - 400 \] ### Part (a): Determining Production Levels for a Profit of \$318,800 We need to find the values of \( x \) such that \( P = 318800 \): \[ 6400x - 18x^2 - 400 = 318800 \] Rearranging the equation: \[ -18x^2 + 6400x - 319200 = 0 \] Divide the entire equation by -2 to simplify: \[ 9x^2 - 3200x + 159600 = 0 \] Using the quadratic formula: \[ x = \frac{3200 \pm \sqrt{3200^2 - 4 \cdot 9 \cdot 159600}}{2 \cdot 9} \] Calculate the discriminant: \[ D = 3200^2 - 4 \cdot 9 \cdot 159600 = 10,240,000 - 5,745,600 = 4,494,400 \] \[ \sqrt{D} = 2120 \] Thus, the solutions are: \[ x = \frac{3200 \pm 2120}{18} \] Which gives: \[ x_1 = \frac{5320}{18} \approx 295.56 \] \[ x_2 = \frac{1080}{18} = 60.00 \] **Answer for part (a):** \[ 60.00, 295.56 \] ### Part (b): Can a Profit of More Than \$318,800 Be Made? The profit function is a downward-opening parabola (since the coefficient of \( x^2 \) is negative). The maximum profit occurs at the vertex of the parabola. The vertex \( x \) value is: \[ x = \frac{-b}{2a} = \frac{-6400}{2 \cdot (-18)} = \frac{6400}{36} \approx 177.78 \] Plugging \( x \approx 177.78 \) back into the profit function to find the maximum profit: \[ P_{\text{max}} = 6400(177.78) - 18(177.78)^2 - 400 \approx 568,488.89 \] Since the maximum profit (\$568,488.89) is greater than \$318,800: **Answer for part (b):** \[ \text{Yes} \] ### Final Answer **(a)** 60.00, 295.56 **(b)** Yes

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the profit levels that will yield \( P = 318800 \), we can set the profit equation equal to 318800: \[ 6400x^2 - 18x^2 - 400 = 318800 \] This simplifies to: \[ 6382x^2 - 318800 - 400 = 0 \] or \[ 6382x^2 - 319200 = 0 \] From here, we can solve for \( x^2 \): \[ 6382x^2 = 319200 \] \[ x^2 = \frac{319200}{6382} \] Calculating that gives us: \[ x^2 \approx 50.0 \] Taking the square root, we find: \[ x \approx 7.07 \] So, the levels of production that yield the desired profit can be approximated as \( 7.07 \) and its negatives, though negative production isn't feasible in this context. For part (b), since the profit function is a downward-opening parabola (as the coefficient of \( x^2 \) is negative), there will be a maximum profit that can be achieved. By finding the vertex of the function, we can determine if profits can exceed \( 318,800 \). Given the maximum profit is at the vertex, it can be concluded that profits cannot exceed \( 318,800 \) once you calculate the vertex. Hence, the answer is **No**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad