Pregunta
upstudy study bank question image url

Sketch on the same set of axes the graphs of and
Clearly indicate all intercepts with the axes, turning point(s) and asymptote(s).

Ask by Deleon Reid. in South Africa
Jan 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To sketch the graphs of and on the same axes:
  1. For :
    • Vertex: At
    • Intercepts: , , and
    • Asymptote: None
    • Behavior: Downward-opening parabola
  2. For :
    • Intercept:
    • Asymptote: Horizontal line at
    • Behavior: Decreasing exponential curve approaching as and descending without bound as
Combined Sketch:
  • Plot the vertex and intercepts for and the intercept for .
  • Draw the horizontal asymptote for .
  • Sketch the parabola for and the exponential curve for based on the key features.
This will give a clear visual representation of both functions on the same set of axes, highlighting their intercepts, turning points, and asymptotes.

Solución

Certainly! Let’s analyze and describe how to sketch the graphs of the functions and on the same set of axes. We’ll identify all intercepts, turning points, and asymptotes for each function.

1. Graph of

Type of Function: Quadratic (parabola)
Orientation: Opens downward (since the coefficient of is negative)
Key Features:
  • Vertex (Turning Point):
    • Formula:
    • ,
    • Vertex:
  • Intercepts:
    • Y-intercept: Set
      • Point:
    • X-intercepts: Set
      • and
      • Points: and
Sketching :
  1. Plot the vertex at .
  2. Plot the intercepts at , , and .
  3. Draw a downward-opening parabola passing through these points.

2. Graph of

Type of Function: Exponential
Transformation:
  • Base: (since )
  • Vertical Stretch/Compression: Multiplied by (reflects over the x-axis and stretches vertically by a factor of 2)
  • Horizontal Shift: Right by 1 unit (due to )
  • Vertical Shift: Up by 1 unit
Key Features:
  • Horizontal Asymptote:
    • (since from below as the exponential term decays or grows)
  • Intercepts:
    • Y-intercept: Set
      • Point:
    • X-intercept: Same as Y-intercept (since )
      • Point:
  • Behavior:
    • As : , so
    • As : , so
    • Monotonicity: Strictly decreasing
Sketching :
  1. Draw the horizontal asymptote at .
  2. Plot the intercept at .
  3. Choose additional points for clarity, e.g.,
    • :
    • :
  4. Draw a smooth curve passing through these points, approaching as and decreasing towards as .

3. Combined Sketch Description

  • Axes: Draw standard x and y axes.
  • Plot :
    • Vertex at
    • X-intercepts at and
    • Y-intercept at
    • Draw a downward-opening parabola through these points.
  • Plot :
    • Horizontal asymptote at (draw a dashed line)
    • Only intercept at
    • Additional points at and
    • Draw a decreasing exponential curve passing through these points, approaching as and descending without bound as .

4. Summary of Key Features

Feature
Vertex None
Y-intercept
X-intercepts and
Asymptote None Horizontal at
Behavior Downward parabola Decreasing exponential

5. Visual Representation

While I can’t provide an actual plot here, below is a rough sketch representation using text:
y
|
10|                  *
  |                 / \
  |                /   \
  |               /     \
 8|             *       \
  |            /         \
 6|           *           \
  |          /             \
 4|         /               \
  |        /                 \
 2|       /                   \
  |      /                     \
 0|-----*----------*------------*-----> x
     -3    -1     0     1      2
  • The asterisks (*) represent key points:
    • For : , , ,
    • For :
  • The dashed horizontal line at represents the asymptote for .
Note: For an accurate and precise graph, it’s recommended to use graphing software or graph paper to plot the points and draw the curves based on the described features.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To sketch the graphs of and , let’s first analyze each function step by step.

For :

  1. Intercepts:
    • Y-intercept: Set : . So, the y-intercept is .
    • X-intercepts: Set : The x-intercepts are and (points and ).
  2. Turning Point: The turning point is found using the vertex formula . Substituting back gives us:
    So the vertex (turning point) is at .
  3. Shape: As , this is a downward-opening parabola.

For :

  1. Intercepts:
    • Y-intercept: Set : . The y-intercept is .
    • X-intercept: Set : Thus, the x-intercept is also .
  2. Asymptote: As approaches , approaches (horizontal asymptote, ).

Sketching:

  • The parabola opens downward with intercepts at , , and a turning point at .
  • The exponential function approaches the horizontal asymptote as moves to the left while it touches the y-axis at .

On the Same Set of Axes:

  • Draw both functions on the same axes.
  • Mark the intercepts and the asymptote clearly.
  • Use distinct colors to differentiate the graphs of and .
The combined sketch will showcase the downward parabola along with the behavior of the exponential function relative to the horizontal asymptote, creating a pleasing visual contrast!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad