Pregunta
upstudy study bank question image url

Find \( s \) and \( r \) if \( (x+3) \) is a factor of \( s x^{3}+r^{2} x^{2}-28 x+15 \) and has a remainder of -60 when divided by \( (x-3) \).

Ask by Clark Bob. in Nigeria
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( s = 2 \) and \( r = \pm i\sqrt{5} \).

Solución

Let's solve for \( s \) and \( r \) given the polynomial: \[ P(x) = s x^3 + r^2 x^2 - 28 x + 15 \] We are given two conditions: 1. \( (x + 3) \) is a factor of \( P(x) \). This means \( P(-3) = 0 \). 2. The remainder when \( P(x) \) is divided by \( (x - 3) \) is \(-60\). This means \( P(3) = -60 \). **Step 1: Apply the Factor Theorem** First, substitute \( x = -3 \) into \( P(x) \): \[ P(-3) = s(-3)^3 + r^2(-3)^2 - 28(-3) + 15 = 0 \] \[ -27s + 9r^2 + 84 + 15 = 0 \] \[ -27s + 9r^2 + 99 = 0 \] Divide the entire equation by 9: \[ -3s + r^2 + 11 = 0 \quad \Rightarrow \quad r^2 = 3s - 11 \quad \text{(Equation 1)} \] **Step 2: Apply the Remainder Theorem** Next, substitute \( x = 3 \) into \( P(x) \): \[ P(3) = s(3)^3 + r^2(3)^2 - 28(3) + 15 = -60 \] \[ 27s + 9r^2 - 84 + 15 = -60 \] \[ 27s + 9r^2 - 69 = -60 \] \[ 27s + 9r^2 = 9 \] Divide the entire equation by 9: \[ 3s + r^2 = 1 \quad \text{(Equation 2)} \] **Step 3: Solve the System of Equations** Substitute \( r^2 \) from Equation 1 into Equation 2: \[ 3s + (3s - 11) = 1 \] \[ 6s - 11 = 1 \] \[ 6s = 12 \] \[ s = 2 \] Now, substitute \( s = 2 \) back into Equation 1: \[ r^2 = 3(2) - 11 = 6 - 11 = -5 \] Since \( r^2 = -5 \), then \( r \) is a complex number: \[ r = \pm \sqrt{-5} = \pm i\sqrt{5} \] **Final Answer:** \[ s = 2 \quad \text{and} \quad r = \pm i\sqrt{5} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the values of \( s \) and \( r \), we can use the Factor Theorem and the Remainder Theorem. First, since \( (x+3) \) is a factor, we can use the fact that if \( (x+3) \) is a factor of the polynomial, then substituting \( x = -3 \) into the polynomial will yield zero: \[ s(-3)^3 + r^2(-3)^2 - 28(-3) + 15 = 0. \] Calculating this step by step: \[ s(-27) + r^2(9) + 84 + 15 = 0, \] which simplifies to: \[ -27s + 9r^2 + 99 = 0. \] Thus, we have our first equation: \[ -27s + 9r^2 + 99 = 0. \quad \text{(1)} \] Next, we turn to the condition that the polynomial has a remainder of -60 when divided by \( (x - 3) \). According to the Remainder Theorem, we can substitute \( x = 3 \) into the polynomial: \[ s(3)^3 + r^2(3)^2 - 28(3) + 15 = -60. \] Calculating this: \[ s(27) + r^2(9) - 84 + 15 = -60, \] which simplifies to: \[ 27s + 9r^2 - 69 = -60. \] Thus, we have our second equation: \[ 27s + 9r^2 - 69 = -60. \quad \text{(2)} \] Now we can simplify equation (2): \[ 27s + 9r^2 = 9. \] From this, we can divide everything by 9: \[ 3s + r^2 = 1. \quad \text{(3)} \] Now we will solve equations (1) and (3) simultaneously. Starting with (3): \[ r^2 = 1 - 3s. \] We can substitute \( r^2 \) from (3) back into (1): \[ -27s + 9(1 - 3s) + 99 = 0, \] which expands to: \[ -27s + 9 - 27s + 99 = 0. \] This simplifies to: \[ -54s + 108 = 0. \] Solving for \( s \): \[ 54s = 108 \implies s = 2. \] Now substitute \( s = 2 \) back into equation (3) to find \( r^2 \): \[ 3(2) + r^2 = 1, \] which simplifies to: \[ 6 + r^2 = 1 \implies r^2 = 1 - 6 = -5. \] Since \( r^2 = -5 \) yields no real solutions, \( r \) must take on complex values. Therefore: \[ r = i\sqrt{5} \quad \text{or} \quad r = -i\sqrt{5}. \] So the final solution is: \[ s = 2, \quad r = \pm i\sqrt{5}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad