(Laws of Exponents with Integer Exponents LC) Which is an equivalent expression for \( \left(\left(\frac{3}{7}\right)^{2} \cdot\left(\frac{2}{3}\right)^{-3}\right)^{-1} \) ? \( \left(\frac{7}{3}\right)^{-2} \cdot\left(\frac{2}{3}\right)^{-3} \) \( \left(\frac{7}{3}\right)^{2} \cdot\left(\frac{2}{3}\right)^{3} \) \( \left(\frac{3}{7}\right) \cdot\left(\frac{2}{3}\right)^{-4} \) \( \left(\frac{3}{7}\right)^{2} \cdot\left(\frac{2}{3}\right)^{-3} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify the expression \( \left(\left(\frac{3}{7}\right)^{2} \cdot\left(\frac{2}{3}\right)^{-3}\right)^{-1} \), we start by applying the negative exponent rule. When you raise a product to a negative exponent, you can take the reciprocal and change the sign of the exponent: \[ \left(\frac{3}{7}\right)^{-2} \cdot \left(\frac{2}{3}\right)^{3} = \left(\frac{7}{3}\right)^{2} \cdot \left(\frac{2}{3}\right)^{3} \] Now we can clearly see that the equivalent expression is \( \left(\frac{7}{3}\right)^{2} \cdot\left(\frac{2}{3}\right)^{3} \). Did you know? The laws of exponents date back to ancient civilizations, with roots in the work of mathematicians in Greece and India. They set the foundation for algebra as we know it today, making it easier to manipulate and solve equations involving powers without getting lost in complex calculations! Want to avoid common mistakes when working with exponents? One common pitfall is misapplying the negative exponent rule. Always remember: a negative exponent means take the reciprocal! Another mistake is forgetting to apply the laws of exponents correctly, which can lead to messy errors. Practice is key, so take time to work through problems and reinforce these concepts!