Pregunta
upstudy study bank question image url

(Laws of Exponents with Integer Exponents LC) Which is an equivalent expression for \( \left(\left(\frac{3}{7}\right)^{2} \cdot\left(\frac{2}{3}\right)^{-3}\right)^{-1} \) ? \( \left(\frac{7}{3}\right)^{-2} \cdot\left(\frac{2}{3}\right)^{-3} \) \( \left(\frac{7}{3}\right)^{2} \cdot\left(\frac{2}{3}\right)^{3} \) \( \left(\frac{3}{7}\right) \cdot\left(\frac{2}{3}\right)^{-4} \) \( \left(\frac{3}{7}\right)^{2} \cdot\left(\frac{2}{3}\right)^{-3} \)

Ask by Cox Paul. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equivalent expression is \( \left(\frac{7}{3}\right)^{2} \cdot \left(\frac{2}{3}\right)^{3} \).

Solución

To determine which expression is equivalent to \[ \left(\left(\frac{3}{7}\right)^{2} \cdot \left(\frac{2}{3}\right)^{-3}\right)^{-1}, \] let's simplify step by step using the **Laws of Exponents**. 1. **Simplify the Inner Expression:** Start with the inner part: \[ \left(\frac{3}{7}\right)^{2} \cdot \left(\frac{2}{3}\right)^{-3} \] Recall that \( \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n} \). Applying this: \[ \left(\frac{2}{3}\right)^{-3} = \left(\frac{3}{2}\right)^{3} \] So the expression becomes: \[ \left(\frac{3}{7}\right)^{2} \cdot \left(\frac{3}{2}\right)^{3} \] 2. **Combine the Exponents:** \[ \left(\frac{3}{7}\right)^{2} \cdot \left(\frac{3}{2}\right)^{3} = \frac{3^{2} \cdot 3^{3}}{7^{2} \cdot 2^{3}} = \frac{3^{5}}{7^{2} \cdot 2^{3}} \] 3. **Apply the Outer Exponent (-1):** \[ \left(\frac{3^{5}}{7^{2} \cdot 2^{3}}\right)^{-1} = \frac{7^{2} \cdot 2^{3}}{3^{5}} \] 4. **Compare with the Given Options:** Let's analyze each option: - **Option 1:** \[ \left(\frac{7}{3}\right)^{-2} \cdot \left(\frac{2}{3}\right)^{-3} = \left(\frac{3}{7}\right)^{2} \cdot \left(\frac{3}{2}\right)^{3} = \frac{3^{5}}{7^{2} \cdot 2^{3}} \] This is the reciprocal of our simplified expression, not equivalent to the original expression. - **Option 2:** \[ \left(\frac{7}{3}\right)^{2} \cdot \left(\frac{2}{3}\right)^{3} = \frac{7^{2} \cdot 2^{3}}{3^{5}} = \frac{392}{243} \] This exactly matches our simplified expression. - **Option 3:** \[ \left(\frac{3}{7}\right) \cdot \left(\frac{2}{3}\right)^{-4} = \frac{3}{7} \cdot \left(\frac{3}{2}\right)^{4} = \frac{243}{112} \] This does not match our simplified expression. - **Option 4:** \[ \left(\frac{3}{7}\right)^{2} \cdot \left(\frac{2}{3}\right)^{-3} = \frac{3^{5}}{7^{2} \cdot 2^{3}} \] Similar to Option 1, this is the reciprocal of our target expression. **Therefore, the correct equivalent expression is:** \[ \boxed{\left(\frac{7}{3}\right)^{2} \cdot\left(\frac{2}{3}\right)^{3}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To simplify the expression \( \left(\left(\frac{3}{7}\right)^{2} \cdot\left(\frac{2}{3}\right)^{-3}\right)^{-1} \), we start by applying the negative exponent rule. When you raise a product to a negative exponent, you can take the reciprocal and change the sign of the exponent: \[ \left(\frac{3}{7}\right)^{-2} \cdot \left(\frac{2}{3}\right)^{3} = \left(\frac{7}{3}\right)^{2} \cdot \left(\frac{2}{3}\right)^{3} \] Now we can clearly see that the equivalent expression is \( \left(\frac{7}{3}\right)^{2} \cdot\left(\frac{2}{3}\right)^{3} \). Did you know? The laws of exponents date back to ancient civilizations, with roots in the work of mathematicians in Greece and India. They set the foundation for algebra as we know it today, making it easier to manipulate and solve equations involving powers without getting lost in complex calculations! Want to avoid common mistakes when working with exponents? One common pitfall is misapplying the negative exponent rule. Always remember: a negative exponent means take the reciprocal! Another mistake is forgetting to apply the laws of exponents correctly, which can lead to messy errors. Practice is key, so take time to work through problems and reinforce these concepts!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad