Pregunta
Find the indicated probability using the standard normal distribution.
\( P(-1.86
Ask by Elliott Fuentes. in the United States
Feb 03,2025
Ask by Elliott Fuentes. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The probability \( P(-1.86 < z < 0) \) is 0.4686.
Solución
To find the probability \( P(-1.86 < z < 0) \) using the standard normal distribution, we can break it down into two parts:
1. Find \( P(z < 0) \)
2. Find \( P(z < -1.86) \)
3. Subtract the second probability from the first to get \( P(-1.86 < z < 0) \).
### Step 1: Find \( P(z < 0) \)
The standard normal distribution is symmetric around zero. Therefore, the probability that \( z \) is less than 0 is:
\[
P(z < 0) = 0.5
\]
### Step 2: Find \( P(z < -1.86) \)
Next, we need to look up the value of \( P(z < -1.86) \) in the standard normal table.
From the standard normal table, we find:
\[
P(z < -1.86) \approx 0.0314
\]
### Step 3: Calculate \( P(-1.86 < z < 0) \)
Now we can calculate the probability:
\[
P(-1.86 < z < 0) = P(z < 0) - P(z < -1.86)
\]
Substituting the values we found:
\[
P(-1.86 < z < 0) = 0.5 - 0.0314 = 0.4686
\]
### Final Answer
Thus, the probability \( P(-1.86 < z < 0) \) rounded to four decimal places is:
\[
\boxed{0.4686}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To find the probability \( P(-1.86
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium