Pregunta
upstudy study bank question image url

Determine if the function below has a horizontal or a slant asymptote, and explain why. \[ f(x)=\frac{-x^{3}-x+5 x^{2}+5}{-5 x+x^{2}+2} \] Answer Attempt 1 out of 2 The function has a \( \square \) numerator is \( \square \) asymptote because the degree of the As \( x \) approaches infinity (positive or negative), the value of \( y \) approaches \( \square \) the degree of the denominator.

Ask by Fuentes Perkins. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function has a slant asymptote \( y = -x \) because the degree of the numerator is one more than the degree of the denominator.

Solución

To determine whether the function \[ f(x) = \frac{-x^{3} + 5x^{2} - x + 5}{x^{2} - 5x + 2} \] has a horizontal or a slant (oblique) asymptote, we need to analyze the degrees of the numerator and the denominator. ### Step 1: Compare Degrees - **Numerator:** The highest power of \( x \) is \( x^3 \), so the degree is **3**. - **Denominator:** The highest power of \( x \) is \( x^2 \), so the degree is **2**. ### Step 2: Determine the Type of Asymptote - **Horizontal Asymptote:** Exists if the degree of the numerator is **equal to or less than** the degree of the denominator. - **Slant (Oblique) Asymptote:** Exists if the degree of the numerator is **exactly one more** than the degree of the denominator. - **No Asymptote:** Exists if the degree of the numerator is more than one higher than the degree of the denominator. In this case, the degree of the numerator (**3**) is **one more** than the degree of the denominator (**2**). Therefore, the function has a **slant asymptote**. ### Step 3: Find the Slant Asymptote To find the slant asymptote, perform polynomial long division of the numerator by the denominator. \[ \frac{-x^{3} + 5x^{2} - x + 5}{x^{2} - 5x + 2} \] **Division Process:** 1. **Divide the leading terms:** \(-x^3 \div x^2 = -x\). 2. **Multiply the entire denominator by \(-x\):** \[ -x \times (x^{2} - 5x + 2) = -x^3 + 5x^2 - 2x \] 3. **Subtract this from the original numerator:** \[ (-x^3 + 5x^2 - x + 5) - (-x^3 + 5x^2 - 2x) = x + 5 \] 4. The remainder is \(x + 5\), which has a lower degree than the denominator, so the division stops here. **Result of Division:** \[ f(x) = -x + \frac{x + 5}{x^{2} - 5x + 2} \] As \( x \) approaches infinity (both positive and negative), the term \(\frac{x + 5}{x^{2} - 5x + 2}\) approaches **0**. Therefore, the slant asymptote is: \[ y = -x \] ### Conclusion - **Type of Asymptote:** Slant (oblique) asymptote. - **Equation of the Asymptote:** \( y = -x \). ### Final Answer The function has a **slant asymptote** because the numerator has degree 3 and the denominator degree 2. As \( x \) approaches infinity or negative infinity, \( y \) approaches the line \( y = -x \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine if the function has a horizontal or slant asymptote, we need to examine the degrees of the numerator and the denominator. The function \( f(x) = \frac{-x^{3} - x + 5x^{2} + 5}{-5x + x^{2} + 2} \) has a numerator of degree 3 and a denominator of degree 2. Since the degree of the numerator is higher than the degree of the denominator, there is no horizontal asymptote. Instead, we can find a slant asymptote by performing polynomial long division. After performing long division, we can see that as \( x \) approaches infinity or negative infinity, the slant asymptote is \( y = -x \). This means that the function behaves similarly to \( -x \) for very large or very small values of \( x \).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad