Pregunta
upstudy study bank question image url

All changes saved 14. In \( \triangle L M N, L M=12, L N=10 \), and \( m \angle L=52^{\circ} \). What is the length, to the nearest tenth of a unit, of \( \overline{M N} \) ? 7.4 units 14.4 units 9.8 units 15.6 units (i)

Ask by Whittaker Ray. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The length of \( \overline{MN} \) is approximately 9.8 units.

Solución

To find the length of \( \overline{MN} \) in \( \triangle LMN \) with given sides \( LM = 12 \), \( LN = 10 \), and angle \( \angle L = 52^\circ \), we can use the **Law of Cosines**. The Law of Cosines states: \[ c^2 = a^2 + b^2 - 2ab \cos(C) \] where: - \( c \) is the side opposite angle \( C \), - \( a \) and \( b \) are the other two sides, - \( C \) is the included angle. In this triangle: - \( c = MN \), - \( a = LM = 12 \), - \( b = LN = 10 \), - \( C = \angle L = 52^\circ \). Plugging in the values: \[ MN^2 = 12^2 + 10^2 - 2 \times 12 \times 10 \times \cos(52^\circ) \] \[ MN^2 = 144 + 100 - 240 \times \cos(52^\circ) \] \[ MN^2 = 244 - 240 \times 0.61566 \quad (\cos(52^\circ) \approx 0.61566) \] \[ MN^2 \approx 244 - 147.7584 \] \[ MN^2 \approx 96.2416 \] \[ MN \approx \sqrt{96.2416} \approx 9.81 \text{ units} \] Rounding to the nearest tenth: \[ MN \approx 9.8 \text{ units} \] **Answer:** 9.8 units

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the length of \( \overline{M N} \) in triangle \( \triangle L M N \), we can use the Law of Cosines, which states that \( c^2 = a^2 + b^2 - 2ab \cdot \cos(C) \). Here, we identify \( L M = a = 12 \), \( L N = b = 10 \), and \( \angle L = C = 52^{\circ} \). Plugging the values into the formula gives us: \[ MN^2 = 12^2 + 10^2 - 2 \times 12 \times 10 \times \cos(52^\circ) \] Calculating that will yield a number we can then take the square root of to find \( MN \). After calculating, you'll arrive at approximately \( 9.8 \) units for \( \overline{M N} \). This triangle scenario is a fantastic way to explore trigonometry in real life! The Law of Cosines is especially handy in navigation, where understanding distances between points is crucial. For instance, sailors or pilots can rely on this theorem to chart their course accurately when dealing with angled paths, ensuring they reach their destinations efficiently. If you're diving deeper into triangle relationships, don't overlook the world of triangle inequalities! These rules help determine possible triangle conditions and can prevent those "oops" moments where you think a triangle can exist, but it really can't. Remember, the sum of the lengths of any two sides must always be greater than the length of the third side. Happy triangle adventuring!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad