Use the figure below for questions 9 - 9. If \( D F=61 \) and \( E F=18 \), find \( D E \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve for \( DE \), we can utilize the triangle inequality theorem, which states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. In this case, we have the sides \( DF \) and \( EF \). Using the formula: \[ DE < DF + EF \quad \text{and} \quad DE > |DF - EF| \] Plugging in the values: \[ DE < 61 + 18 = 79 \] \[ DE > |61 - 18| = 43 \] Thus, the length of \( DE \) must be between \( 43 \) and \( 79 \). However, without additional information or constraints, we cannot determine an exact length.