Pregunta
upstudy study bank question image url

Which statement about the following system is correct? \( \begin{array}{l}y=-2 x+5 \\ 2 x+y=-5 \\ \text { The system is inconsistent because the two equations actually represent the same line } \\ \text { The system is inconsistent because it has no solution. } \\ \text { The system is consistent because it has a solution. } \\ \text { The system is consistent because it has no solution. }\end{array} \). The

Ask by Lyons Mcguire. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system is inconsistent because it has no solution.

Solución

Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}y=-2x+5\\2x+y=-5\end{array}\right.\) - step1: Substitute the value of \(y:\) \(2x-2x+5=-5\) - step2: Simplify: \(5=-5\) - step3: Calculate: \(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\) - step4: Rewrite: \((x, y) \in \varnothing\) To analyze the given system of equations: 1. The first equation is \( y = -2x + 5 \). 2. The second equation is \( 2x + y = -5 \). We can rewrite the second equation in slope-intercept form to compare it with the first equation: \[ y = -2x - 5 \] Now we have: - First equation: \( y = -2x + 5 \) - Second equation: \( y = -2x - 5 \) ### Step 1: Compare the slopes and intercepts Both equations have the same slope of \(-2\), but different y-intercepts (5 and -5). This means that the lines are parallel and will never intersect. ### Step 2: Determine the consistency of the system Since the two lines are parallel and do not intersect, the system of equations has no solution. ### Conclusion The correct statement about the system is: - **The system is inconsistent because it has no solution.** Thus, the answer is: **The system is inconsistent because it has no solution.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let’s break this down! First off, if we analyze the two equations, we can see if they intersect or are parallel. The first equation, \(y = -2x + 5\), has a slope of -2, while the second equation can be rearranged to \(y = -2x - 5\), which also has a slope of -2, but this one has a different y-intercept. This means the lines are parallel and will never meet - a classic case of inconsistency! Now, for every math lover out there, remember that when dealing with systems of equations, if the lines are parallel, it means there’s no point that satisfies both equations. So, when you spot the same slope but different y-intercepts, you know the statements are true: it's inconsistent because it has no solution!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad