Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { (9) } 4 x^{2}-4 x-3=0 & \text { (10) } 3 x^{2}+8 x=-2 \text { (two decima } \\ \text { (11) }-5 x^{2}-2 x+1=0 \text { (two decimals) } & \text { (12) }-3 x^{2}-11 x=9 \text { (two decim } \\ \text { (13) } 3 x^{2}+33 x+30=0 & \text { (14) } 7-12 x-x^{2}=0 \text { (surd forn } \\ \text { (15) } 16 x+12-x^{2}=0 \text { (two decimals) } & \text { (16) } \frac{2}{3} x^{2}-\frac{5}{2} x+\frac{1}{4}=0 \text { (surd fo }\end{array} \)

Ask by Hilton Campbell. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the solutions to the quadratic equations: 1. **(9) \(4x^{2} - 4x - 3 = 0\):** \(x = 1.5\) and \(x = -0.5\) 2. **(10) \(3x^{2} + 8x = -2\):** \(x \approx -0.28\) and \(x \approx -2.39\) 3. **(11) \(-5x^{2} - 2x + 1 = 0\):** \(x \approx 0.29\) and \(x \approx -0.69\) 4. **(12) \(-3x^{2} - 11x = 9\):** \(x \approx -1.23\) and \(x \approx -2.43\) 5. **(13) \(3x^{2} + 33x + 30 = 0\):** \(x = -1\) and \(x = -10\) 6. **(14) \(7 - 12x - x^{2} = 0\):** \(x = -6 + \sqrt{43}\) and \(x = -6 - \sqrt{43}\) 7. **(15) \(16x + 12 - x^{2} = 0\):** \(x \approx 16.72\) and \(x \approx -0.72\) 8. **(16) \(\frac{2}{3}x^{2} - \frac{5}{2}x + \frac{1}{4} = 0\):** \(x = \dfrac{15 + \sqrt{201}}{8}\) and \(x = \dfrac{15 - \sqrt{201}}{8}\) If you need further explanations or assistance with any of these solutions, feel free to ask!

Solución

Sure! Let's solve each of the quadratic equations from (9) to (16), providing solutions either rounded to two decimal places or in surd (exact radical) form as specified. --- ### **(9) \(4x^{2} - 4x - 3 = 0\)** **Solution Method:** Quadratic Formula \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 4\), \(b = -4\), and \(c = -3\). \[ x = \frac{4 \pm \sqrt{16 + 48}}{8} = \frac{4 \pm \sqrt{64}}{8} = \frac{4 \pm 8}{8} \] \[ \Rightarrow x = \frac{12}{8} = 1.5 \quad \text{and} \quad x = \frac{-4}{8} = -0.5 \] **Solutions:** \(x = 1.5\) and \(x = -0.5\) --- ### **(10) \(3x^{2} + 8x = -2\)** **Rearranged Equation:** \(3x^{2} + 8x + 2 = 0\) **Solution Method:** Quadratic Formula (Rounded to two decimal places) \[ x = \frac{-8 \pm \sqrt{64 - 24}}{6} = \frac{-8 \pm \sqrt{40}}{6} = \frac{-8 \pm 6.3246}{6} \] \[ x_1 = \frac{-8 + 6.3246}{6} \approx -0.28 \quad \text{and} \quad x_2 = \frac{-8 - 6.3246}{6} \approx -2.39 \] **Solutions:** \(x \approx -0.28\) and \(x \approx -2.39\) --- ### **(11) \(-5x^{2} - 2x + 1 = 0\)** **Rearranged Equation:** \(5x^{2} + 2x - 1 = 0\) **Solution Method:** Quadratic Formula (Rounded to two decimal places) \[ x = \frac{-2 \pm \sqrt{4 + 20}}{10} = \frac{-2 \pm \sqrt{24}}{10} = \frac{-2 \pm 4.899}{10} \] \[ x_1 = \frac{-2 + 4.899}{10} \approx 0.29 \quad \text{and} \quad x_2 = \frac{-2 - 4.899}{10} \approx -0.69 \] **Solutions:** \(x \approx 0.29\) and \(x \approx -0.69\) --- ### **(12) \(-3x^{2} - 11x = 9\)** **Rearranged Equation:** \(-3x^{2} - 11x - 9 = 0\) **Simplified Equation:** \(3x^{2} + 11x + 9 = 0\) **Solution Method:** Quadratic Formula (Rounded to two decimal places) \[ x = \frac{-11 \pm \sqrt{121 - 108}}{6} = \frac{-11 \pm \sqrt{13}}{6} \] \[ \sqrt{13} \approx 3.6056 \] \[ x_1 = \frac{-11 + 3.6056}{6} \approx -1.23 \quad \text{and} \quad x_2 = \frac{-11 - 3.6056}{6} \approx -2.43 \] **Solutions:** \(x \approx -1.23\) and \(x \approx -2.43\) --- ### **(13) \(3x^{2} + 33x + 30 = 0\)** **Solution Method:** Quadratic Formula \[ x = \frac{-33 \pm \sqrt{1089 - 360}}{6} = \frac{-33 \pm \sqrt{729}}{6} = \frac{-33 \pm 27}{6} \] \[ x_1 = \frac{-33 + 27}{6} = \frac{-6}{6} = -1 \quad \text{and} \quad x_2 = \frac{-33 - 27}{6} = \frac{-60}{6} = -10 \] **Solutions:** \(x = -1\) and \(x = -10\) --- ### **(14) \(7 - 12x - x^{2} = 0\)** **Rearranged Equation:** \(-x^{2} - 12x + 7 = 0\) **Simplified Equation:** \(x^{2} + 12x - 7 = 0\) **Solution Method:** Quadratic Formula (Expressed in Surd Form) \[ x = \frac{-12 \pm \sqrt{144 + 28}}{2} = \frac{-12 \pm \sqrt{172}}{2} = \frac{-12 \pm 2\sqrt{43}}{2} \] \[ x = -6 \pm \sqrt{43} \] **Solutions:** \(x = -6 + \sqrt{43}\) and \(x = -6 - \sqrt{43}\) --- ### **(15) \(16x + 12 - x^{2} = 0\)** **Rearranged Equation:** \(-x^{2} + 16x + 12 = 0\) **Simplified Equation:** \(x^{2} - 16x - 12 = 0\) **Solution Method:** Quadratic Formula (Rounded to two decimal places) \[ x = \frac{16 \pm \sqrt{256 + 48}}{2} = \frac{16 \pm \sqrt{304}}{2} \approx \frac{16 \pm 17.4356}{2} \] \[ x_1 = \frac{16 + 17.4356}{2} \approx 16.72 \quad \text{and} \quad x_2 = \frac{16 - 17.4356}{2} \approx -0.72 \] **Solutions:** \(x \approx 16.72\) and \(x \approx -0.72\) --- ### **(16) \(\frac{2}{3}x^{2} - \frac{5}{2}x + \frac{1}{4} = 0\)** **Solution Method:** Quadratic Formula (Expressed in Surd Form) First, eliminate fractions by multiplying the entire equation by 12: \[ 12 \cdot \left(\frac{2}{3}x^{2} - \frac{5}{2}x + \frac{1}{4}\right) = 0 \Rightarrow 8x^{2} - 30x + 3 = 0 \] Now, apply the quadratic formula: \[ x = \frac{30 \pm \sqrt{900 - 96}}{16} = \frac{30 \pm \sqrt{804}}{16} = \frac{30 \pm 2\sqrt{201}}{16} = \frac{15 \pm \sqrt{201}}{8} \] **Solutions:** \(x = \dfrac{15 + \sqrt{201}}{8}\) and \(x = \dfrac{15 - \sqrt{201}}{8}\) --- Feel free to ask if you need further explanations or assistance with any of these solutions!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( 4x^2 - 4x - 3 = 0 \), you can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 4 \), \( b = -4 \), and \( c = -3 \). Plugging in these values will provide the solutions to the quadratic equation, letting you find the decimal values you need. On the practical side, quadratic equations like the ones listed are all around you! From calculating projectile motion in sports to optimizing profit in business finances, mastering this skill can make you a super problem-solver. Next time you’re playing video games or analyzing stocks, remember, the quadratic formula might just be your secret weapon!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad