Pregunta
upstudy study bank question image url

Sketch the graph of the function. \[ g(x)=\left\{\begin{array}{ll}x+1, & x \leq-4 \\ \frac{1}{2} x-5, & x>-4\end{array}\right. \]

Ask by Cook Love. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To sketch the graph of the function: \[ g(x) = \begin{cases} x + 1, & \text{if } x \leq -4 \\ \frac{1}{2}x - 5, & \text{if } x > -4 \end{cases} \] 1. **For \( x \leq -4 \)**: - Plot the line \( y = x + 1 \). - At \( x = -4 \), \( g(-4) = -3 \). 2. **For \( x > -4 \)**: - Plot the line \( y = \frac{1}{2}x - 5 \). - As \( x \) approaches \(-4\) from the right, \( g(x) \) approaches \(-7\). 3. **Discontinuity at \( x = -4 \)**: - At \( x = -4 \), there's a jump from \( y = -3 \) to \( y \) approaching \(-7\). 4. **Key Points**: - \( (-4, -3) \) (closed circle) - \( (-5, -4) \) (another point on the first line) - \( (0, -5) \) (y-intercept of the second line) - \( (2, -4) \) (another point on the second line) 5. **Graph Description**: - Two separate lines connected by a jump at \( x = -4 \). - The first line is steeper for \( x \leq -4 \). - The second line is less steep for \( x > -4 \). This graph shows a piecewise function with a jump discontinuity at \( x = -4 \).

Solución

To sketch the graph of the piecewise function: \[ g(x) = \begin{cases} x + 1, & \text{if } x \leq -4 \\ \frac{1}{2}x - 5, & \text{if } x > -4 \end{cases} \] let's analyze each part of the function and understand how they connect. ### 1. Analyzing Each Piece #### a. For \( x \leq -4 \): \( g(x) = x + 1 \) - **Type of Function**: This is a linear function with a slope of 1 and a y-intercept at (0, 1). - **Key Point at \( x = -4 \)**: \[ g(-4) = (-4) + 1 = -3 \] - **End Behavior**: As \( x \) decreases (goes to the left), \( g(x) \) decreases linearly. #### b. For \( x > -4 \): \( g(x) = \frac{1}{2}x - 5 \) - **Type of Function**: This is also a linear function but with a slope of \( \frac{1}{2} \) and a y-intercept at (0, -5). - **Limit as \( x \) Approaches -4 from the Right**: \[ \lim_{x \to -4^+} g(x) = \frac{1}{2}(-4) - 5 = -2 - 5 = -7 \] - **End Behavior**: As \( x \) increases (goes to the right), \( g(x) \) increases gradually. ### 2. Continuity at \( x = -4 \) At \( x = -4 \), we need to check if the function is continuous. - **Left-hand Limit** (\( x \to -4^- \)): \[ \lim_{x \to -4^-} g(x) = (-4) + 1 = -3 \] - **Right-hand Limit** (\( x \to -4^+ \)): \[ \lim_{x \to -4^+} g(x) = -7 \] - **Function Value**: \[ g(-4) = -3 \] Since the left-hand limit (\(-3\)) does not equal the right-hand limit (\(-7\)), there is a **jump discontinuity** at \( x = -4 \). ### 3. Sketching the Graph Below is a descriptive sketch of the graph: ``` y | | * | / | / | / | / | / | / | / | / | / | / | / | / | / |-----------*-------------- x | (-4, -3) (Jump to (-4, -7)) | ``` **Explanation**: - **For \( x \leq -4 \)**: Plot the line \( y = x + 1 \). It passes through the point \((-4, -3)\). This line extends to the left. - **For \( x > -4 \)**: Plot the line \( y = \frac{1}{2}x - 5 \). The value approaches \(-7\) as \( x \) approaches \(-4 \) from the right, but at \( x = -4 \), the function value is \(-3\). This creates a jump from \(-3\) to values approaching \(-7\). - **Discontinuity**: At \( x = -4 \), there's an open circle at \((-4, -7)\) and a closed circle at \((-4, -3)\) to indicate the jump. ### 4. Key Points to Plot - **For \( x \leq -4 \)**: - Point at \( (-4, -3) \) - Another point at \( (-5, -4) \) (since \( g(-5) = -5 + 1 = -4 \)) - **For \( x > -4 \)**: - Point approaching \( (-4, -7) \) as \( x \) approaches \(-4\) from the right - Point at \( (0, -5) \) (y-intercept) - Point at \( (2, -4) \) (since \( g(2) = \frac{1}{2}(2) - 5 = -4 \)) ### 5. Summary - **Two distinct linear segments**: - A steeper line for \( x \leq -4 \) - A less steep line for \( x > -4 \) - **Jump Discontinuity at \( x = -4 \)** - **No overlapping points**; the function switches from one line to the other abruptly. This piecewise function models a situation where the behavior changes at \( x = -4 \), resulting in two separate linear trends connected by a jump.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To graph the function \( g(x) \), we will look at the two pieces separately. For \( x \leq -4 \), the function is represented by the equation \( g(x) = x + 1 \). This is a straight line with a slope of 1, intersecting the y-axis at \( (0, 1) \). To find the corresponding point when \( x = -4 \), plug in to get \( g(-4) = -4 + 1 = -3 \). So, the point \( (-4, -3) \) serves as the endpoint of this piece. For \( x > -4 \), the function is given by \( g(x) = \frac{1}{2}x - 5 \). This is another line with a slope of \( \frac{1}{2} \) and a y-intercept of \( -5 \). Evaluating at \( x = -4 \) gives \( g(-4) = \frac{1}{2}(-4) - 5 = -2 - 5 = -7 \). However, this part does not include \( x = -4 \), showing there’s a break in the graph here. When you sketch this graph, remember that at \( x = -4 \), the point \( (-4, -3) \) is included (filled dot), whereas the point \( (-4, -7) \) from the second piece is not (open dot). Connect the lines to their endpoints while respecting this break at \( x = -4 \).

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad