If \( p \in\{0 ; 1 ; 2 ; 3 ; 4\} \), determine the value of p such that \( \sqrt{\frac{16}{p-2}} \) 1.1 .1 is irrational 1.1 .2 is non real 1.1 .3 is undefined
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To determine the value of \( p \) such that \( \sqrt{\frac{16}{p-2}} \) is irrational, non-real, or undefined, we need to analyze the expression's denominator \( p-2 \). 1.1.1 For \( \sqrt{\frac{16}{p-2}} \) to be irrational, \( p-2 \) must be a perfect square. The only value for \( p \) from the set \(\{0, 1, 2, 3, 4\}\) that makes \( p-2 \) rational (and thus keeps the fraction under the square root rational) is \( p = 3 \), yielding \( \sqrt{16} = 4\) (not irrational). Hence, all other values, except \( p=2 \) yield a non-perfect square. 1.1.2 To have \( \sqrt{\frac{16}{p-2}} \) give a non-real number, the expression \( p-2 \) must be negative. In this case, \( p \) must be less than \( 2 \). This occurs when \( p = 0 \), \( p = 1\). Both cases yield a negative in the denominator resulting in complex numbers since a square root of a negative number is not defined in the reals. 1.1.3 The expression is undefined when the denominator is zero. Thus, \( p - 2 = 0 \) leads us to \( p = 2\), which makes this condition true, indicating an undefined state. In summary: - For irrational: \( p = 4 \) makes it rational but approaching irrational through larger sequences. - For non-real: \( p = 0\) or \( p = 1\). - For undefined: \( p = 2\).