Pregunta
upstudy study bank question image url

Find the domain of \( \mathrm{f}(\mathrm{x}) \). \[ f(x)=\sqrt{x^{2}-9 x+18} \] Answer Attempt out of 2 Answer Type: Interval \( ^{\text {Fin }} \)

Ask by Thornton Potter. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The domain of \( f(x) = \sqrt{x^{2} - 9x + 18} \) is all real numbers \( x \) such that \( x \leq 3 \) or \( x \geq 6 \).

Solución

To determine the domain of the function \( f(x) = \sqrt{x^{2} - 9x + 18} \), we need to ensure that the expression inside the square root is non-negative: \[ x^{2} - 9x + 18 \geq 0 \] **Step 1: Find the Roots of the Quadratic** First, solve the equation \( x^{2} - 9x + 18 = 0 \) to find the critical points. \[ \text{Discriminant} (D) = (-9)^2 - 4(1)(18) = 81 - 72 = 9 \] \[ x = \frac{9 \pm \sqrt{9}}{2} = \frac{9 \pm 3}{2} \] \[ x = 6 \quad \text{or} \quad x = 3 \] **Step 2: Test Intervals Around the Roots** The critical points divide the real number line into three intervals: 1. \( x < 3 \) 2. \( 3 < x < 6 \) 3. \( x > 6 \) Choose a test point from each interval to determine where the quadratic is non-negative. - **For \( x < 3 \) (e.g., \( x = 0 \)):** \[ (0 - 3)(0 - 6) = (-3)(-6) = 18 \geq 0 \] - **For \( 3 < x < 6 \) (e.g., \( x = 4.5 \)):** \[ (4.5 - 3)(4.5 - 6) = (1.5)(-1.5) = -2.25 < 0 \] - **For \( x > 6 \) (e.g., \( x = 7 \)):** \[ (7 - 3)(7 - 6) = (4)(1) = 4 \geq 0 \] **Step 3: Combine the Intervals** The quadratic is non-negative in the intervals where: \[ x \leq 3 \quad \text{or} \quad x \geq 6 \] **Final Domain:** \[ (-\infty, 3] \cup [6, \infty) \] **Answer:** \((-\infty,\,3\,]\,\cup\, [\,6,\,\infty)\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the domain of the function \( f(x) = \sqrt{x^2 - 9x + 18} \), we need the expression inside the square root to be non-negative. So we need to solve the inequality: \[ x^2 - 9x + 18 \geq 0 \] Factoring the quadratic gives us: \[ (x - 6)(x - 3) \geq 0 \] This means that the function will be valid when \( x \) is in the intervals where the product is non-negative: either both factors are positive or both are negative. Analyzing the critical points, we find \( x = 3 \) and \( x = 6 \). Testing intervals: - For \( x < 3 \): Both \( (x - 6) < 0 \) and \( (x - 3) < 0 \) → product is positive. - For \( 3 < x < 6 \): \( (x - 3) > 0 \) and \( (x - 6) < 0 \) → product is negative. - For \( x > 6 \): Both \( (x - 6) > 0 \) and \( (x - 3) > 0 \) → product is positive. Thus, the solution is valid at the boundaries: So, the domain of \( f(x) \) is \( (-\infty, 3] \cup [6, \infty) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad