Force and Work Relationships Quick Check \[ \begin{array}{l}\text { If } W=F \times d \text {, which of the following equations shows work being calculated using the correct units? (1 point) } \\ \qquad 113 J=(17.4 \mathrm{~N}) \times(6.51 \mathrm{ft}) \\ \text { O } 113 \mathrm{~J}=(17.4 \mathrm{~N}) \times(6.51 \mathrm{~m}) \\ 1113 \mathrm{~N}=(17.4 \mathrm{~J}) \times(6.51 \mathrm{ft})\end{array} \] \[ \begin{array}{l}17.4 \mathrm{~J}) \times(6.51 \mathrm{~m})\end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
The correct equation to show work being calculated using the proper units is \( 113 \, \text{J} = (17.4 \, \text{N}) \times (6.51 \, \text{m}) \). In this case, work (W) is measured in joules (J), which is equivalent to newtons (N) multiplied by meters (m). Remember that 1 Joule equals 1 Newton-meter, so always ensure you’re using compatible units to avoid confusion in your calculations. In real-world applications, understanding the relationship between force, distance, and work can be super useful! For example, think of lifting a box: the amount of work you do can be calculated by multiplying the weight of the box (in newtons) by the height you lift it (in meters). If the box weighs 17.4 N and you lift it 6.51 m, you can easily determine the work you’ve done—113 J in this case—making it practical knowledge for homework hauling or even gym workouts!