Identify the graph for the equation. \[ y=4\left(\frac{1}{2}\right)^{x} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
This equation represents an exponential decay graph. The base, \(\frac{1}{2}\), indicates that as \(x\) increases, the value of \(y\) will decrease, approaching zero but never quite reaching it. The factor of 4 serves as a vertical stretch, so the graph starts at \(y=4\) when \(x=0\) (since \(y=4\cdot1\)) and heads downward to the right, showcasing that classic exponential decay behavior. To sketch this graph, plot the point (0, 4) first. Then, choose a few negative and positive values for \(x\), like -2 and 2. For \(x = -2\), \(y\) will be \(4 \times 2^2 = 16\), and for \(x = 2\), \(y = 4 \times (1/2)^2 = 1\). Connect these points smoothly, and you'll see a steep drop from 16 to 1, illustrating the rapid decrease of the function.