9) \( \begin{array}{l}-5 x+y=-2 \\ -3 x+6 y=-12\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve this system of equations, you can use the substitution or elimination method. Here, let's use elimination. First, multiply the first equation by 3 to align the coefficients of \( x \): \[ \begin{array}{l} -15x + 3y = -6 \quad (1) \\ -3x + 6y = -12 \quad (2) \end{array} \] Now, multiply equation (1) by 2 to match the coefficient of \( y \) in equation (2): \[ -15x + 3y = -6 \quad (1) \times 2 \implies -30x + 6y = -12 \quad (3) \] Now, subtract equation (2) from equation (3): \[ (-30x + 6y) - (-3x + 6y) = -12 - (-12) \] \[ -30x + 3x = 0 \implies -27x = 0 \] Thus, \( x = 0 \). Substitute \( x \) back into either of the original equations to solve for \( y \): Using equation 1: \[ -5(0) + y = -2 \implies y = -2 \] The solution to the system is \( (0, -2) \).