Pregunta
upstudy study bank question image url

18.7 Chech Your Underntandions \( \triangle R B N \) is a triangle where \( m \angle R B N=90^{\circ}, m \angle R N B=60^{\circ} \) and \( R N=8 \sqrt{2} \) What is the length of \( B N P \) 4 \( 4 \sqrt{2} \) \( 4 \sqrt{6} \) \( 2 \sqrt{5} \) 1 Brat

Ask by May Reyes. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The length of \( BN \) is \( 4 \sqrt{2} \).

Solución

Let's solve the problem step by step. **Given:** - Triangle \( \triangle RBN \) with a right angle at \( B \) (\( \angle RBN = 90^\circ \)). - \( \angle RNB = 60^\circ \), which makes \( \angle BRN = 30^\circ \) (since the sum of angles in a triangle is \( 180^\circ \)). - The length of side \( RN = 8\sqrt{2} \). **Objective:** - Find the length of \( BN \). **Solution:** In a \( 30^\circ-60^\circ-90^\circ \) triangle, the sides are in the ratio \( 1 : \sqrt{3} : 2 \), where: - The side opposite the \( 30^\circ \) angle (\( BN \)) is the shortest side. - The side opposite the \( 60^\circ \) angle (\( RB \)) is \( \sqrt{3} \) times the shortest side. - The hypotenuse (\( RN \)) is twice the shortest side. Given that \( RN = 8\sqrt{2} \), we can set up the following relationship based on the ratio: \[ 2 \times (\text{shortest side}) = 8\sqrt{2} \] \[ \text{shortest side} = \frac{8\sqrt{2}}{2} = 4\sqrt{2} \] So, the length of \( BN \) is \( 4\sqrt{2} \). **Answer:** \( 4 \sqrt{2} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the length of \( B N \) in triangle \( \triangle R B N \), we can apply trigonometric ratios or utilize the properties of the 30-60-90 triangle. Since \( m \angle R B N = 90^\circ \) and \( m \angle R N B = 60^\circ \), we realize that angle \( m \angle R B N \) implies that \( R N \) acts as the diagonal across from the 60-degree angle. In a 30-60-90 triangle, the ratios of the lengths of the sides opposite the angles are \( 1:\sqrt{3}:2 \). Given that \( R N = 8\sqrt{2} \), which is opposite the 60-degree angle, we can conclude that \( B N = RN \times \sin(m \angle R B N) \) or directly apply the ratio, giving us the leg opposite \( R N \). Now, let's do some fun math! The length of \( B N \) can be calculated as \( B N = R N \times \frac{\sqrt{3}}{2} \), which leads us to a magical number! By calculating it out, we find \( B N = 8 \sqrt{2} \times \frac{\sqrt{3}}{2} = 4\sqrt{6} \). So, it's delightful to see that the answer is indeed \( 4\sqrt{6} \)! Adding a sprinkle of trivia, the 30-60-90 triangle is not just a key player in trigonometry; it appears in architecture and design. The proportions make it perfect for creating aesthetically pleasing triangular designs in various structures! For those intrigued by more math wonders, I encourage exploring more about the various types of triangles! Diving into 45-45-90 triangles and their properties can reveal additional delightful relationships and real-world applications in everything from engineering to art. Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad