Find \( f(g(x)) \) and \( g(f(x)) \) and determine whether the pair of functions \( f \) and \( g \) are inverses of each other \( f(x)=4 x+2 \) and \( g(x)=\frac{x-2}{4} \) a. \( f(g(x))=x \) (Simplify your answer) b. \( g(f(x))=\square \) (Simplify your answer)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find \( f(g(x)) \), we substitute \( g(x) \) into \( f(x) \): 1. First, we have \( g(x) = \frac{x-2}{4} \). 2. Now substituting \( g(x) \) into \( f(x) \): \[ f(g(x)) = f\left(\frac{x-2}{4}\right) = 4\left(\frac{x-2}{4}\right) + 2 \] Simplifying this: \[ = (x - 2) + 2 = x \] So, \( f(g(x)) = x \). Now let's find \( g(f(x)) \): 1. We start with \( f(x) = 4x + 2 \). 2. Substituting \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(4x + 2) = \frac{(4x + 2) - 2}{4} \] Simplifying this: \[ = \frac{4x}{4} = x \] So, \( g(f(x)) = x \). Since \( f(g(x)) = x \) and \( g(f(x)) = x \), the functions \( f \) and \( g \) are indeed inverses of each other!