Pregunta
upstudy study bank question image url

\( f(x)=\frac{x^{2}-9}{x-3} \) Choose the correct attribute of the rational function. A. The horizontal asymptote is \( y=3 \). The graph has the oblique asymptote \( \mathrm{y}=\mathrm{x}-3 \). C. The vertical asymptote is \( \mathrm{x}=3 \). D. There is a "hole" in the graph at \( \mathrm{x}=3 \).

Ask by Rodriquez Christensen. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is a hole in the graph at \( x = 3 \).

Solución

Let's analyze the rational function \( f(x) = \frac{x^{2} - 9}{x - 3} \): 1. **Simplify the Function:** \[ f(x) = \frac{x^{2} - 9}{x - 3} = \frac{(x - 3)(x + 3)}{x - 3} \] For \( x \neq 3 \), this simplifies to: \[ f(x) = x + 3 \] 2. **Identifying Asymptotes and Holes:** - **Oblique Asymptote:** Since the simplified form is \( f(x) = x + 3 \), the graph has an **oblique asymptote** at \( y = x + 3 \). - **Vertical Asymptote:** Normally, a vertical asymptote occurs where the denominator is zero (i.e., \( x = 3 \)). However, because the factor \( (x - 3) \) cancels out, there's no vertical asymptote at \( x = 3 \). Instead, there's a **"hole"** in the graph at \( x = 3 \). - **Horizontal Asymptote:** Since the degree of the numerator and denominator are the same, there is a horizontal asymptote. However, after simplification, the function behaves like a linear function \( y = x + 3 \), so the oblique asymptote takes precedence, and there is **no horizontal asymptote** at \( y = 3 \). 3. **Evaluating the Options:** - **Option A:** Incorrect. - It incorrectly states that the horizontal asymptote is \( y = 3 \) and the oblique asymptote is \( y = x - 3 \). The correct oblique asymptote is \( y = x + 3 \). - **Option C:** Incorrect. - It incorrectly claims a vertical asymptote at \( x = 3 \). Instead, there's a hole at this point. - **Option D:** Correct. - It correctly identifies that there is a hole in the graph at \( x = 3 \). **Answer:** **D. There is a "hole" in the graph at \( \mathrm{x}=3 \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's simplify the function \( f(x)=\frac{x^{2}-9}{x-3} \). We can factor the numerator: \( x^{2}-9 = (x-3)(x+3) \), so we rewrite the function as \( f(x)=\frac{(x-3)(x+3)}{x-3} \). For \( x \neq 3 \), this simplifies to \( f(x)=x+3 \), which is a linear function but has a hole at \( x=3 \). Therefore, the correct attribute is option D. While the function approaches a vertical asymptote at \( x=3 \), it actually has a "hole" there rather than a true asymptote, because the function is undefined at that point due to the cancellation of the factors. So yes, you can confidently say that the function has a hole at \( \mathrm{x}=3 \) due to the undefined nature of the original form!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad