Pregunta
upstudy study bank question image url

81. \( \frac{2 x^{2}-3 x-20}{2 x^{2}-7 x-30} \div \frac{2 x^{2}-5 x-12}{4 x^{2}+12 x+9} \)

Ask by Young Vega. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The simplified form of the expression is \( \frac{2x + 3}{x - 6} \).

Solución

To simplify the expression: \[ \frac{2 x^{2}-3 x-20}{2 x^{2}-7 x-30} \div \frac{2 x^{2}-5 x-12}{4 x^{2}+12 x+9} \] **Step 1: Rewrite Division as Multiplication** Dividing by a fraction is the same as multiplying by its reciprocal. So, \[ \frac{2x^{2} - 3x - 20}{2x^{2} - 7x - 30} \div \frac{2x^{2} - 5x - 12}{4x^{2} + 12x + 9} = \frac{2x^{2} - 3x - 20}{2x^{2} - 7x - 30} \times \frac{4x^{2} + 12x + 9}{2x^{2} - 5x - 12} \] **Step 2: Factor Each Quadratic Expression** 1. **Factor \(2x^{2} - 3x - 20\):** \[ 2x^{2} - 3x - 20 = (2x + 5)(x - 4) \] 2. **Factor \(2x^{2} - 7x - 30\):** \[ 2x^{2} - 7x - 30 = (2x + 5)(x - 6) \] 3. **Factor \(4x^{2} + 12x + 9\):** \[ 4x^{2} + 12x + 9 = (2x + 3)^2 \] 4. **Factor \(2x^{2} - 5x - 12\):** \[ 2x^{2} - 5x - 12 = (2x + 3)(x - 4) \] **Step 3: Substitute the Factored Forms Back into the Expression** \[ \frac{(2x + 5)(x - 4)}{(2x + 5)(x - 6)} \times \frac{(2x + 3)^2}{(2x + 3)(x - 4)} \] **Step 4: Cancel Common Factors** - \(2x + 5\) cancels out. - \(x - 4\) cancels out. - One \(2x + 3\) cancels out. After canceling, we are left with: \[ \frac{2x + 3}{x - 6} \] **Final Simplified Form:** \[ \frac{2x + 3}{x - 6} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To simplify the given expression \( \frac{2 x^{2}-3 x-20}{2 x^{2}-7 x-30} \div \frac{2 x^{2}-5 x-12}{4 x^{2}+12 x+9} \), we need to rewrite the division as multiplication by the reciprocal. The expression can be rewritten as: \[ \frac{2 x^{2}-3 x-20}{2 x^{2}-7 x-30} \times \frac{4 x^{2}+12 x+9}{2 x^{2}-5 x-12} \] Next, we will factor each polynomial: 1. **For \(2 x^{2}-3 x-20\)**: To factor this, we look for two numbers that multiply to \(2 \times -20 = -40\) and add to \(-3\). These numbers are \(5\) and \(-8\). \[ 2 x^{2}-3 x-20 = 2 x^{2} + 5 x - 8 x - 20 = (2 x + 5)(x - 4) \] 2. **For \(2 x^{2}-7 x-30\)**: We want two numbers that multiply to \(2 \times -30 = -60\) and add to \(-7\): those are \(-12\) and \(5\). \[ 2 x^{2}-7 x-30 = 2 x^{2} - 12 x + 5 x - 30 = (2 x + 5)(x - 6) \] 3. **For \(2 x^{2}-5 x-12\)**: We look for two numbers that multiply to \(2 \times -12 = -24\) and add to \(-5\): these are \(-8\) and \(3\). \[ 2 x^{2}-5 x-12 = 2 x^{2} - 8 x + 3 x - 12 = (2 x + 3)(x - 4) \] 4. **For \(4 x^{2}+12 x+9\)**: This expression can be factored as a perfect square. \[ 4 x^{2}+12 x+9 = (2 x + 3)^{2} \] Now, substituting back into our expression, we have: \[ \frac{(2x + 5)(x - 4)}{(2x + 5)(x - 6)} \times \frac{(2x + 3)^{2}}{(2x + 3)(x - 4)} \] Next, we can cancel out common factors: - Cancel \(2x + 5\) from the numerator and denominator. - Cancel \(x - 4\) from the numerator and denominator. - Cancel one \(2x + 3\) from the numerator and denominator. This gives: \[ \frac{(2x + 3)}{(x - 6)} \] Thus, the simplified expression is: \[ \frac{2x + 3}{x - 6} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad